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PREFACE

The research reported here was performed in the Optical Science
Laboratory of the Advanced Concepts Division, Environmental Research
Institute of Michigan (ERIM). The work was sponsored by the Air Force
Weapons Laboratory (AFWL) through the Wright Research and Develonment
Center (WRDC) under Contract F33615-83~C-1046. At AFWAL/AARI the
Project Monitor was Lt. Robert Fetner and the Program Manager was Mr,

William Martin., At AFWL/AROB, the Program Manager was Maj. Paul S.
Idell. '

This final technical report covers research performed from 1 August
1986 to 7 November 1988, during which time there were three successive
associated efforts, (For the sake of readability this report describes
all three efforts together, covering topics 1in a logical rather than
chronological order.) The principal investigator at ERIM was James R.
Fienup. The other major contributors to this work were Ron S. Goodman
and Ann M. Kowalczyk. Additional contributors were Carl C. Aleksoff,
Stuart R. DeGraaf, John H. Seldin, and Christopher C. Wackerman,
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1.0 INTRODUCTION

To obtain useful images of satellites from the ground, .large
apertures are needed. According to the laws of diffraction, to obtain
a resolution p at a range-to-target R with light of wavelength )\, an
aperture of diameter about D = AR/p is required., At optical or near-
infrared wavelengths, we would therefore need an aperture on the order
of one meter in diaméter for Tow-altitude earth-orbiting satellite, and
an aperture the size of a football field for geosynchronous satellites,
Conventional telescopes fail to achieve this for two reasons. . First,
for the case of high-altitude satellites, the required large apertures
are well beyond the current state of the art. Second, for all cases,
atmospheric turbulence limits the resolution to an effective aperture
diameter of "o (Fried's parameter), which 1{s typically in the range of
0.05 to 0.20 meters, a small fraction of what is needed. Compensated
imaging systems, consisting of wavefront sensors coupled with adaptive
optics to correct for atmospheric turbulence in real-time, may work
well for the low-altitude case, but that technology does not scale well
for the high-altitude case. N

This report describes new methods we have developed for
reconstructing fine-resolution images of satellites which circumvent
both the problems of atmospheric turbuience .and obtaining large
apertures with today's technology. These methods are also advantageous
because they employ the simplest, least expensive receiver possible.
Hardware complexity is minimized, however, at the expense of software
complexity and computing requirements. This trade-off is increasingly
advantageous as computers have. been evolving . much faster than -optics
and detectors. We have also developed methods that take data from
sensors based on other imaging concepts und reduce the phase errors
that are present in the data.




While, in this report, we concentrate on the probleh'of {maging
satellites, the methods described here can also be used for other
apniications such as SDI dlscrimlnetlon and tactlcel 1meglng

The assumed optical system for the meJorlty of this report is as
follows. A pulsed lager of long coherence length 1llumlnates the
target object: '~ The intensity 'of the backscattered radiation is
detected by an'array of simple llght ~bucket detectors on the ground.
distributed over 4n area of diameter, D. Alternatively, for the low=
altitude case, the radiation can be collected by a telescope, but the
- detector array is placed in a plane conjugate to (i.e., at en imege of)
the aperture plane, rather than 1n the usuel focel plene. '

“ Since the phase errors due to etmoepheric turbulence are introduced.
“{n.a:"volume relatively "near to the eperture plene, the detecqed
intensities are, to first order, unaffected by the etmospheric
-turbulence, -(The ' intensity is affected only to “the extent that
rsolntilletlon, caused by’ strong upper-atmospheric turbulence. is
present.) If the phase associated with the 1ntensit1es could be
retrieved, then by digitally back-propagating the wavefront at the
-aperture ;plane to a plane at the target object (essentially a Fourier
" transform), we could obtain a diffraction-limited - image. This 1mege
-would be complex-valued and would suffer from speckle. Since the
-realization of the image speckle pattern would change for each leser
pulse (as the object rotates slightly or translates), by avereglng over
the intensities of several such images we can average out the speckles
and obtain the equivalent of an incoherent, speckle-free image of the
object.  The required phases can be computed usind one of the phase-
retrieval (image reconstruction) algorithms developed under this
effort. They require either a glint or glints to bekpresent on the
object or to have measured partial information about the phase of the
wavefront in the aperture plane.




In a second imaging mode, the multiple realizations of the
aperture-plane intensities can be averaged so as to obtain the modulus
(magnitude) of the Fourier transform of the incoherent image. Again,
by the phase retrieval algorithm, the phase of the Fourier transform
can be retrieved, allowing the reconstructicn of a diffraction-limited
incoherent image. We have <called this latter mode "imaging
correlography.” It has the advantage of working under much broader
circumstances (no glints or partial phase are required), but has the

disadvantage of requiring a large number of .laser pulses to build up a
sufficient signal-to-noise ratio.

This report describes the techniques developed for these two novel
imaging modes and phase-error correction techniques that can be applied
to other imaging sensors. It also describes several associated topics,
including the comparison of several competing imaging approaches.

In overview, the ‘imaging approaches we have developed, which
utilize phase retrieval algorithms, make possible the reconstruction of
fine-resolution images of satellites using hardware technology that is
available today. The approaches require only 1ight-bucket detectors
which require no phasing and do not have to be very fast. The cost of
such a system would be a small fraction of the cost of most competing
approaches. Alternatively, improved images can be obtained from other
imaging sensors by correction of residual phase errors.

Section 2 of this report contains a brief summary of the research
accomplishments. Individual topics are described in detail in Sections
3 to 8. References are found at the end of each section.




2.0 SUMMARY OF ACCOMPLISHMENTS

In this section, we briefly summarize the &ccomplishments of our
research on active imaging. Details are given in the sections that
follow.

As described in Section 3, we developed a new imaging modality
called imaging correloqraphy. In it, multiple arrays.of aperture-plane
intensity measurements of laser pulses backscattered by the object are
collected. By averaging over the autocovariances of these.intensity
measurements, we arrive at an estimate of the squared modulus of the
Fourier transform of the 1incoherent ’obJect (the object reflectivity
function for incoherent 11luminatfon). . From these data, a fine-
resolution nonspeckled image can be reconstructed using the iterative
Fourier transform‘(phase retrieval) algorithm, .

The basic theory of imaging correlography was developed. Averaging
in both the aperture plane and the Fourier transform of the aperture
plane were analyzed. Multiple realizations of complex-valued, laser-
illuminated reflectivity functions of a satellite model were computer
simulated, and the aperture-plane data were simulated. The averages
were computed, and Wiener filtering of the resultant Fourier modulus
estimates was performed. Images were reconstructed from these data for
various numbers of frames (laser pulses). When a large number of
frames were processed, high-quality, fine-resolution d{mages were
successfully reconstructed,

The same experiments were repeated for the case of a sparse
collecting array consisting of a Golay arrangement of six subapertures.
The ability of Wiener filtering to correct for the effects of the MTF
of the sparse array and the ability to reconstruct fine-resolution
images were demonstrated.




The signal-to-noise ratio (SNR) of the simulated correlography
data was measured and compared with.theoretical predictions, and it 'was
found that they generally agreed well with one another. The number of
frames of data required to achieve a given resolution for a particular
image of a satellite model was determined. However, this resilt
depends on the spatial-frequency content of the object. The effect of
photon noise for low 1ight levels was analyzed, and it was found that
the effects of photon noise are small as long as the number of photuns
per speckle per frame 1is much greater than two. Alternative Wiener

filters for improving the SNR were deri»ed and an iterative filtering
method was suggested.

As described in Section ‘4, derivations “of the results of
noncoherent averaging of images and of the correlography quantities for
the case of a mixed object were performed. By a mixed object we mean a
coherently illuminated object that has both a fixed, deterministic
comporient (such as a glint or glints) and'a random, diffuse component.
It wés found that if the deterministic component of the object consists
of a'single glint (a fairly common occurance), then the traditiona1
correlography estimators give an incorrect answer; howovor,' a new
estimator, denoted as <I,I, - ;2 + 12 >, or <Ly, - var(1)>, gives the
correct answer. ‘This new estimator also gives the correct answer whon
no glint is present.

. -As..described in Section 5, methods were ° devoloped.'for
reconstructing a coherent image from a single frame of aperture-plane
intensity data when the object has 'one or more g11nto. The most
successful wethod is effective for the most difficult case -- when the
object has multiple glints not spatially separated frim the diffuse
component. ~ It consists of three successive algonithméz (1) an
autocorrelation tri-intersection algorithm that determines the glint
positions and values; (2) the AF-synthesis algorithm that produces a




partially~reconstructed image; and (3) the iterative Fourier transform
algorithm, which completes the reconstruction of a fine-resolution
image. This method was demonstrated to reconstruct. fine-resolution
images from computer-simulated data. The effect of noise was . computer-
simulated, and the sensitivity of the method to photon noise and to
glint strength was determined by computer reconstruction experiments.

Other coherent reconstruction approaches for the case of objects
having glints were also 1investigated. Reconstructions were
successfully parformed using only the iterative Fourier transform
algorithm for the cases of one and two glints on the object. A,
recursive reconstruction algorithm based on the autocorrelation of the
object (which can be computed from the aperture-plane intensity data)
was developed for the case of a single glint on the object. The
effects of large glints on the quantization error when detecting the
intensity data were analyzed. We found that the quantization error
could be greatly reduced by having an automatic gain control that would
scale down the detected intensity when a very large glint would appear,
A variable zero-offset was found to be useful to a Tesser extent.

As described 1in Sections 6 and 7, methods were developed for
reconstructing a coherent image from a single frame of aperture-plane
intensity data when partial information about the phase of the optical
field is available. These methods are also effective when we have
partial phase information for the case of incoherent-image
reconstruction as well,

As described in Section 6, a new variation of the iterative Fourier
transform algorithm, called the expanding weighted modulus algorithm,
was developed. It can be applied when the Fourier phase is known well
over a small aperture, but 1is unknown over the large, full aperture.
It involves iterating with progressively 1larger weighting functions




imposed on the Fourier modulus data, reconstructing prerqssively
finer-resolution images, effectively bootstrapping from the phase dver
the small aperture to the phase over the large aperture. The image-
domain constraint used for the iterative transform algorithm is a
support (finite extent) constraint.

A second case, reconstruction from one bit of phasq known'pvqr the
entire aperture, was also investigated. When the object is "causal"
(i.e., is entirely to one side of the optical axis), then the image can

be reconstructed easily by a windowing operation and the iterative
transform algorithm.

A third case is where the phase 1is known poorly over the entire
aperture, or, equivalently, a noisy phase exists over the entire
aperture. This would be the case {if we use any other imaging method
that results in phase errors,  For this case, another variation of the
iterative transform algorithm, cailed the phase variance algorithm, was
developed. In it, the given Fourier modulus, which is assumed to be
measured with ~a higher SNR, s reinforced exactly, but the given
Fourier phase is reinforced inexactly; it is allowed to wander from the
measured phase in accordance with the standard deviation of the error
of the phase. Appropriate data were simulated and reconstruction
experiments were performed. For the case of incoherent images (for
which one has a nonnegativity constraint), the phase variance algorithm
converges faster to the solution than the traditional algorithm. For
the case of coherent 1images, the phase variance algorithm produced
images of significantly better quality than that given by the noisy
measured phase, but left room for further improvement. Thus, the phase
variance algorithm should be used to clean up images produced by other
imaging methods. Investigation of the effect of photon noise on the
Fourier modulus data was performed by computer simulhtidn_ and
reconstruction experiments. It was shawn that if the Fourier modulus




data are sufficiently noisy, then the phase variance algorithm no
longer improves the image. A further algorithm improvement was
suggested: allow both the modulus and phase to vary from their measured
values, each in accordance with the variance of the noise on that data.
Then in the areas of spatial-frequency space where the modulus is less
noisy than the phase, the phase is improved by reinforcing the modulus;
and in the areas where the phase 1is 1less noisy than the modulus, the
modulus is improved by reinforcing the phase.

As described 1in Section 7, another method of correcting phase
errors over the entire aperture was developed. Called 2-D shear
averaging, it corrects phase errors using a prior{ information about
the statistics of the coherent object =-- that it is delta-correlated --
rather than the usual object-domain support constraint. The algorithm
is computationally simple, consisting of three . steps. First, phase-
error differences in each of the two dimensions are estimated from the
summation over a sheared product of the given Fourier transform. The
derivation of this result {is similar to that of the shearing-
interferometer wavefront sensor. Next, the phase error 15 computed
from the phase-error differences by a recrusive method, such as those
employed for wavefront sensing or Knox-Thompson image reconstruction.
Complex exponentials are employed to avoid phase unwrapping
difficulties. Finally, the phase-error estimate is subtracted from the
given Fourier phase to yield a corrected Fourier transform. Inverse
transformation yields the corrected image. Several versions of the
algorithm, differing in the way that the sheared product is averaged,
were studied. Analysis was performed to predict the residual phase
errors left by this statistically-based algorithm. Data with a variety
of phase errors were digitally simulated and 1image reconstruction
experiments were performed. For smooth but higher-order 2-D phase
errors the 2-D shear averaging algorithm was shown to improve the image
quality substantially, although there was room for further image-




quality improvement. Thus, the 2-D shear averaging algorithm shou'd ‘be _ |
used to clean up 1images produced by othcr 1maging methods ‘when the
phase errors are slowly varying.

As described in Section 8, several different classes of imaging
systems -appropriate for imaging satellites were briefly compared,
including both active and passive approaches. Several methods for

obtaining fire¢~ >solution images, besides the conventional’ methads of

compensated imay%.4g and microwave synthetic-aperture radar, appear to
show promise, One good ~example of a novel approach is an array of
sensors, each consisting of a dual-plane detection of laser radiation
plus a wavefront sensor. This approach ‘employs a robust form of phase
retrieval to determine the optical field in the aperture plane from two
.arrays of intensity data without requiring heterodyne detection. The
~wavefront sensor, operating on incoherent 1ight, determines the
. ~wavefront error due to atmospheric turbulence. The phase of the latter

is subtracted from the phase of - the former to yield the phase due to
the -object "alone.

In summary, several different approaches to reconstructing fine-
resolution images of satellites, using rselatively simple receivers,
were developed. These methods could make possible imaging systems of
greatly reduced cost and complexity compared with compensated imaging
(using adaptive optics). They tend to scale well for the case of deep-
space objects, for which the receiver array must be much larger than
any existing optical telescope.
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3.0 IMAGING CORRELOGRAPHY

In this section, the new imaging method we call imaging
correlography is described. It makes use of multiple realizations of
the intensity of the coherent optical field, backscattered from the
object, measured in the aperture plane, to arrive at an inccherent
image of the object. The basic concept is described in Section 3.1.
The method is demonstrated for sparse arrays of detectors in Section
3.2, The signal-to-nnise ratio achieved in computer simulation is
compared with theory in Section 3.3. Wiener filtering issues are
further discussed in Section 3.4, Correlography for a "mixed" object,
i.e. one having a deterministic (glint) component as well as a diffuse
component, 13 described in Section 3.5, where 1t is shown that a new
estimator is required,

3.1 IMAGING CORRELOGRAPHY THEORY AND RESULTS

It is well known that the spatial structure of a fully developed
lasersspeckle pattern -- produced by the coherent interference of light
backscattered from a sufficiently diffuse, reflecting surface -- is
dependent on the macroscopic features of the illuminated surface [3.1].
In this Chapter we demonstrate that measurements of the backscattered
speckle intensity are sufficient to (uniquely) reconstruct a high-
resolution, unspeckled, incoherent image (or brightness distribution)
of the coherently 11luminated object.

Our approach to image synthesis is based on the fact that from the
average energy spectrum of a laser-speckle intensity pattern we can
obtain the autocorrelation function of the illuminated object's
brightness distribution [3.2]. Here, the object's brightness
distribution corresponds to the object's reflectance function or,
alternatively, to 1its irradiance distribution had the object been




i1luminated by an incoherent 1ight source. Since the Fourier transform
of the autocorrelation of the object brightness function is equivalent
to the squared modulus of the Fourier transform of the brightness
function [3.3], an image of the object can be obtained if the phase
associated with this Fourier transform can be determined. Fortunately,
a practical solution to this phase-retrieval problem has been
demonstrated by Fienup [3.4-3.6], in which an i{terative transform
algorithm can be used to recover the phase associated with the modulus
of the Fourier transform of a real, nonnegative object function,
provided that certain boundedness and nonnegativity constraints ave
continually reinforced throughout the iteration process. The iterative
transform algorithm, together with certain digital preprocessing
operations (which are described below) permit us to recover complete,
unspeckled images from nonimaged speckle data. ‘

Let us suppose that a diffuse object 1s flood illuminated with a
laser whose coherence length is at least twice as long as the object is
deep. An array of photodetectors measures the backscattered 1ight
intensity in a far-field plane some distance from the'objict. We
assume that the object 1is optically rough, so that its microscale
surface height variations are random and comparable in size with the
wavelength of light. This being the case, the reflected laser 1ight is
randomly (and coherently) dephased, and the photodetectors in the
observation plane record a fully developed laser-speckle pattern.

Each realization of the observed speckle intensity In(u) may be
expressed as the squared modulus of the Fourier transform of the
complex object field: '

I, = 1F 2 = 15s, (012, (3-1)
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where F denotes a Fourier transform, jn(x) = I]o(x)l2 exp[ﬂn]'l is the
field reflected by the object, Ifo(x)l is the object's field amplitude
reflectivity, and on(x) is the (random) phase of the nth realization of
the reflected object field associated with the object's surface height
profile. In the above expression, x represents a two-dimensional
spatial (or angular) coordinate vector in object or image space; u
represents a two-dimensional coordinate in the measurement plane. The
inverse Fourier transform of the observed speckle pattern is
proportional to the autocorrelation of the object field, which may be
written as . -

r(x) = F{IF, (W1 H(u)}
= [f,(x) 8 f,(x)] * h(x) , (3-2)

where ?’1 denotes an inverse Fourier transform, * denotes a convolution
operation, and & denotes an autocorrelation. The aperture function
H(u) denotes the region of the measurement plane over which the speckle
pattern is observed: H(u) = 1 for points within the measurement
aperture, and H(u) « 0 elsewhere. The function h(x) = 1'1{H(u)} is the
(diffraction-limited) coherent impulse response; hence rn(x) is a
diffraction-1imited (albeit speckled) autocorrelation of the laser-
illuminated object.

Using the {terative transform algorithm, one could attempt to
reconstruct a complex-valued, speckled image of fn(x) from IFn(u)I2
H(u) or equivalently from rn(x). However, at present the practical
reconstruction algorithm is effective only for certain classes of
complex-valued objects if the object's support is known a priori [3.7]
and for even more restrictive classes of complex-valued objects if the
object support is unknown. (The support is the closed set of points
outside which the object is zerc.) Such cases are described in Section
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4, In this section, we concentrate on a method that allows us to
reconstruct a real, nonnegative image -- a case for which the iterative
transform algorithm is effective for a broad class of objects.

Image recovery begins by estimating the average energy spectrum of
the observed speckle pattern by averaging together the squared moduli
of many independent speckled autocorrelations rn(x). " This may be
referred to as noncoherent averaging of the coherent autocorrelations.
Independent realizations of the speckle pattern can be ohtained, for
example, by laterally displacing the observation plane with respect to
the object or by measuring the speckle pattern for slightly different
rotations of the object. We can show that as the number N of
~ independent speckle realizations increases, the computed average energy
spectrum converges to [3.8]

N+»

1n N1 Eg; lrn(x)l2 -Iblh(x)l2 + cro(x) * Ih(x)l2 . (3-5)

where

2
b = c[ I lfo(x')l2 dzx‘] : (3-4)
is the square of the total measured irradiance,

ro(x) = 1£o(x)12 0 17,(x)12 (3-5)

is the autocorrelation of the object brightness function, and ¢ is a
constant. Thus the average energy spectrum converges to the sum of an
autocorrelation of the desired incoherent image plus a dc term
blh(x)lz, where the dc term is simply the (incoherent) pointspread
function of the collecting aperture, possessing a strength b. On
subtracting the dc term from the averaged energy spectrum, we obtain a




diffraction-1imited autocorrelation of the incoherent object. The
square root of the Fourier transform of this incoherent object
autocorrelation, then, provides us with an estimate of the modulus of
the Fourier transform of the object's brightness function. Note that
one can obtain the same results by subtracting a bias from an average
of the autocorrelations of In(u) and then taking the square root. One
can see that the latter approach 1is analogous to a highly redundant,
multichannel intensity interferometer [3.9].  This latter approach is
described in more detail in Section 3.2.

We conducted a series of computer experiments to demonstrate that
phase retrieval can be used to recover imagery from speckle data
processed in this way, Original object data for these experiments were
contained in a digitized photograph of a satellite model 11luminated
with incoherent 1ight. These data comprised approximately 40 x 60
pixels embedded in a 128 x 128 discrete array. Each realization of a
coherent (speckled) image of the object was obtained from the digitized
photograph by (1) replacing each pixel with a circular-complex Gaussian
random variable whose real and imaginary -parts possessed variances
equal to half of the pixel {intensity value and (2) low-pass filtering
the result. The filter used to smooth the complex object data
corresponds to the aperture function H(u), which was represented by a
64 x 64. square of detector pixels embedded in 128 x 128 array.
Multiple realizations of the coherent object data were obtained by
using different random-number seeds 1in the computation of the complex
Gaussian random variables. Each coherent image autocorrelation r"(x)
was computed by inverse Fourier transforming the squared modulus of the
apertured Fourier transform of the simulated coherent image. Averages
of both the speckled autocorrelations and their squared moduli (i.e.,
the energy spectrum of the speckle-intensity patterns) were then taken.
A function proportional to the square of the former, an estimate of the
dc term, was subtracted from the 1latter (the noncoherent average) to
arrive at an estimate for the autocorrelation of the incoherent image.




The  process of noncoherently  averaging object-field
autocorrelations and subtracting the dc term is illustrated in "ig.
3-1. The first column contains averages of the squared inverse Fourier
transforms of N simulated speckle measurements providing estimates of
the speckle energy spectrum, where N 1is the number of independent
speckled autocorrelations noncoherently averaged. The second column
shows the corresponding dc term, which, for the case of a square
aperture, is a squared sinc(x) [i.e., (fx)'1 sin(¥x)] function. The
third column shows the results when the dc term is subtracted from the
noncoherently averaged autocorrelations of the first column. Note that
the speckle artifacts in the averaged autocorrelations (in the first
and third columns of Fig. 3-1) disappear as N increases,

The incoherent autocorrelation estimate (with the dc term removed)
was then Fourier transformed, and the square root was taken, to arrive
at an estimate of the modulus of the Fourier transform of the object
brightness function. MNegative numbers, resulting from noise associated
with the finite-average approximation to an ensemble average, were set
to zero before the square root was taken. Images were reconstructed
from the Fourier modulus estimates by using the iterative Fourier-
transform algorithm [3.5, 3.6], using several cycles of the hybrid
input-output algorithm (using g = 0.7) and the error reduction
algorithm until the algorithm appeared to stagnate. The object-domain
constraints used were nonnegativity (since an incoherent image is being
reconstructed) and a loose support constraint (a rectangle half the
size of the smallest rectangle enclosing the autocorrelation).

Data along the first row of Fig. 3-2 illustrate a direct
application of the phase-retrieval algorithm to the Fourier modulus
estimate. Figure 3-2(A) represents the dc-subtracted autocorrelation
for N = 10° independent speckle patterns. Figure 3-2(B) shows the
corresponding Fourier modulus data produced by Fourier transforming the




FIGURE 3-1. ESTIMATING THE ENERGY SPECTRUM OF SPECKLE INTENSITY BY
NONCOHERENTLY AVERAGING MANY COHERENT SPECKLED IMAGE AUTOCORRELATIONS.
(A) Noncoherent average of N = 4 autocorrelations; (B) estimate of dc
term; (C), (A) minus %B); (D)-(F) N = 32; (G)-(I) N = 128; (J)=-(L) N =
1024.

17







averaged autocorrelation [Fig., 3-2(A)] and then taking the square root.
Figure 3-2(C) 1is the reconstructed image produced by applying the
phase-retrieval algorithm as outlined above. Note that this image is
very noisy compared with the original 1ndohqrent object, shown in Fig.
3-2(G). Noise in the reconstructed image is due to the fact that a
finite number of speckle realizations were used to estimate the Fourier
modulus. To reduce these noise effects, we multiplied the Four{er
modulus estimate [Fig. 3-2(B)] by a Wiener filter of the form

OTF(Au)Agg(Au)

W(Au) = =
B T e e o,

' (3-6)

where OTF(Au) = H(u)8H(u) 1{s the optical transfer function of the
receiver aperture, Es(Au) is an average energy spectrum for objects of
this type (estimated by taking an angular average over the squared
Fourier modulus of the object), and En is the energy spectrum of the
noise. We approxiﬁated E, by a constant whose value was obtainqd by
averaging the squared Fourier modulus estimate over those higher
spatial frequencies where the signal-to-noise ratio was less than one.
Figure 3-2(D) shows the Wiener filter used for this example.

Figure 3-2(E) shows the filtered Fourier modulus estimate equal to
the product of Figs. 2(B) and 2(D). Figure 3-2(F) shows the image
reconstructed from the Wiener-filtered Fourier modulus estimate using
the phase-retrieval algorithm. Note that the Wiener filter has
significantly improved the quality of the reconstructad image in Fig.
3-2(F) over that in Fig. 3-2(C) reconstructed without Wiener filtering.
For comparison, the original object [shown in Fig. 3-2(G)] was passed
through the Wiener filter of Fig. 3-2(D), with the result shown in Fig.
3-2(H). The image reconstructed from speckle~correlaiion measurements,
shown in Fig. 3-2(F), compares favorably with the filtered object [Fig.
3-2(H)], indicatirg good performance on the part of the iterative




1

transform reconstruction algorithm.  Finally, Fig. 3-2(I) Shows the
result of applying the Wiener filter to the reconstructed 1mhge shown
in -Fig. 3-2(C). Apparently, Wiener 'filtefing followed by image
reconstruction is superior to image reconstruction followed by Wiener
filtering. '

These results demonstrate the possibility of recovering images from
nonimaged laser speckle patterns: by averaging over many realizations
of the coherent (speckle) intensity data, an estimate of the
autocorrelation and Fourfer modulus of the incoherent object can be
obtained. And, from the Fourier modulus estimate, it is possible to
reconstruct an unspeckled image by applying a phase-retrieval algorithm
with a nonnegativity constraint,

Figures 3-3 and 3-4 show results similar to those in Fig. 3-2, but
for a smaller number of realizations, N, -of the speckle patterns.
Figure 3-3 shows the case for N = 1024 realizations and Figure 3-4 the
case of N = 128 realizations. As expected, the image quality decreases
with fewer number of speckle frames due to the statistical noise
associated with a finite number of frames, Section 3-3 will discuss in
greater detail the signal-to-noise issues. |

Since these computer “simulations were .performed, laboratory
experimental verification of imaging correlography has also been
accomplished [3.10].

This section is an expansion of Reference 3.11.




FIGURE 3-3. [IMAGE RECOVERY FROM NONCOHERENTLY AVERAGE AUTOCORREI.ATION
DATA (N =~ 1024, FILLED APERTURE). (A) DC-adjusted, noncoherently
averaged autocorrelations, (B) estimate of the Fourier modulus of the
incoherent object, (C) image reconstructed from (B) using the iterative
transform (phase-retrieva]? algorithm, (D) Wiener filter, (E) filtered
Fourier modulus estimate, (F) 1image reconstructed from (E), EG;

original incoherent object, (H) Wiener filtered, incoherent object, (I
result of Wiener filtering (C).
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FIGURE 3-4., IMAGE RECOVERY FROM NONCOHERENTLY AVERAGE AUTOCORRELATION
DATA (N = 128, FILLED APERTURE), (A) DC-adjusted, noncoherently
averaged autocorrelations, (B) estimate of the Fourier modulus of tha
incoherent object, (C) Wiener filter, %D filtered Fourier modulus
estimate, (E) image reconstructed from (D), (F) original incoherent
object, (G) Wiener filtered, incoherent object.




3.2 IMAGING CORRELOGRAPHY WITH SPARSE ARRAYS OF DETECTORS

In this section the use of imaging correlography, introduced in the
previous section, with sparse arrays of detectors 1is discussed and
demonstrated through digital simulations. In this case it is important
to emphasize the relationship between the aperture function shape and
the modulation transfer function (MTF) for the image. For this reason
we start with an alternative (but mathematically equivalent)
explanation of the correlography process.

Rather than relating, as we have done above in Eq. (3-3), the
average energy spectrum of the speckle pattern to the autocorrelation
function of the object's brightness function, we can equate the
autocovariance of the far-field laser specile pattern with the energy
spectrum of the object's brightness function, This second
interpretation suggests the following procedure for image recovery:
(1) estimate the autocovariance of the observed speckle intensity, (2)
take the square root of the estimated autocovariance, (3) recover the
phase associated with this square-root, and finally (4) inverse Fourier
transform the assembled Fourier data. Image recovery using this
prescription uncovers a close relationship between imaging
correlography and image recovery from intensity interferometry [3.13],
where the object's ‘ Fourier phase information, too, 1s 1lost to the
measurement process. (The fact that Fourier domain information of
incoherent objects can he obtained from far-field correlations is, of
course, a consequence of the Van Cittert-Zernike theorem [3.12].)

We can demonstrate the relationship between the autocovariance of
the laser speckle pattern and the object energy spectrum by considering
the measurement process involved 1in 1imaging correlography. Let us
suppose that a diffuse object is flood i1luminated with a laser so that
the object 1ies entirely within the coherence volume of the laser beam.
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A two-dimensional array of photodetectors measures the backscattered
1ight intensity in a (far-field) plane some distance z from the object
(see Fig. 3-5 for a possible measurement scenario). We assume that the
object 1is optically rough so that its microscale surface height
variations are random and of size comparable to or greater than the
wavelength of 1ight. Additionally, we assume that the transverse scale
size of the surface height fluctuations 1s small compared to the
resolution patch size associated with the collecting array (i.e., the
spatial correlation of surface roughness 1is small compared to )\z/D, .
where )\ is the wavelength of 1light, z 1is the range, and D is the
largest array dimension). This being the case, the reflected laser
light is randomly (and coherently) dephased and the photodetectors in
the observation plane record the intensity pattarn of a fu11y dev010ped
- laser speckle pattern [3.1]. .

An estimate.of the autocovariance of the measured spéckle'pattérn,

[see Eq. 3-1], may be computed as follows from N reaIizations of ‘the
laser speckle intensity: ‘ ‘

C (au; N) = § % [ W+ du) K [1,0u + au) o) - 7] e

= [[ Heu + u) ) [}1] ?’i‘l [xn(q +8u) 1 (u) - Tz]] d%u (3-7)

where T is the average intensity of the observed speckle pattern, Au is
a vector separation in the measurement plane, and H(u) is the pupil
(aperture) function associatéd with the collecting array, defined as

1, for u € aperture array

H(u) = [ - T, (3-8)

0, otherwise
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FIGURE 3-5, SENSING GEOMETRY FOR A SPARSE-ARRAY IMPLEMENTATION OF
IMAGING CORRELOGRAPHY. Light from the Taser - 1s expanded to flood
11luminate the target object. The backscattered laser speckle
intensity is measured with 11ght bucket detectors arranged in an
unfilled, two-dimensional array configuration,




In the 1imit as N (the number of independent observed speckle patterns)
approaches infinity, one can use the moment factoring theorem for
circular-complex Gaussian (ccg) fields [3.13] to show that

N'im. ﬁ ;5; (100 + 2 1,00) - T2] lP(Au)|2 N '(3;9)

where I'(Au) = ?[Ifo(x)lzl is the Fourier transform of the object's
brightness distribution [i.e., T(Au) 1{s the mutual intensity of the
(complex) speckle field in the measurement aperture, evaluated at field
. points separated by a vector Au]. Our ability to invoke the ccg moment
theorem above follows from the fact that the observed speckle field is
ccg, since the speckle pattern is fully developed. ' .In the limit N + »,
we therefore find from Eqs. (3-7) and (3-9) . that the estimated
autocovariance of the speckle intensity obsenved over the measurqment
aperture H(u) 1s given by

¢, (bu) w lim € (aur W)
(T2
« OTF(Au) IT(Au)12 (3-10)

where OTF(u) is the autocorrelation of H(u). This result demonstrates
that c (Au;N) provides an estimate for Ir(Au)l  the snergy spectrum of
the object's brightness function -- the square root of which is an
estimate of the Fourier modulus of the object's birightness function,
This square root -is wused in the i{terative transform algorithm to
retrieve the associated Fourier phase data and thereby reconstruct an
1mage.
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We see from Eq. (3-10) that the estimated autocovariance of the
observed speckle pattern provides a weighted, or filtered, estimate of
the object's energy spectrum. This weighting is completely determined
by the spatial arrangement of the detectors making up the collecting
aperture. Because this weighting function OTF(Au) is equal to the
autocorrelation of the measurement pupil, we refer to OTF(Au) as the
optical transfer function (OTF) for the imaging correlography system --
with obvious analogy to the OTF arising in the analysis of incoherent
imaging systems. The modulation transfer function (MIF), is Just the
modulus of the OTF; and since the OTF 1is nonnegative, MTF(Au) =
OTF(Au). The fact that this OTF 1{s in the form of an autocorrelation
allows us to consider the use of sparse arrays of intensity detectors
in imaging correlography.

The fact that the OTF for imaging correlography is given by the
autocorrelation of the pupil function H(u) suggests a procedure with
which to remove sidelobe artifacts introduced by a multiple-aperture
(sparse array) measurement scheme, If the detector elements are
positioned so that the autocorrelation of the detector array does not
drop to zero within the bandpass of the OTF, the object energy spectrum
estimated by the imaging correlography process contains essentially the
same spatial frequencies as a filled aperture having the same diameter
as the sparse array. And, provided that the noise in the estimated
autocovariance is not too great, the energy spectrum estimate can be
boosted to match the OTF of a completely filled aperture; an image with
nearly the resolution of the full aperture is then, 1in theory,
synthesized.

In practical applications of 1imaging correlography, noise in the
Fourier modulus estimate will arise from many sources including
detector noise, background flux noise, photon shot noise, and noise .
that {s introduced when a finite number of srackle measurements is used
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to estimate the speckle autocovariance.  Where all the noise sources
additive and uncorrelated with the signal component, one would.
logically implement the MTF boosting proceduré by applying a Wiener-
Helstrom filter [3.14] to the Fourier modulus estimate so that the
mean-square error between the estimated image and the,trug'(full-
- resolution) image is minimized. Even 1if the signal and noise.sources
do not exactly 'satisfy these conditions, a Wiener-Helstrom. filter is
sti11 very advantageous to use [3.14]. '

.For conventional 1ncoherent imaging systems the Niener-He1§trom
filter is of the form '

TF(, u) 1

W(Au) =
1OTF(Au) 1% 1T (u) 1€ + E, (8u)

(3-11)

v

where Ir‘(Au)l2 is the energy spectrun of the object's brightness
fungti@n, equal to Eg(Au) used in Eq. (3-6), OTF(Au) is the OTF of the
collecting aperture, and En(Au) is the energy spectrum of the image-
domain noise. This filter is based on a model of the imaging process
which is given in the Fourier domain as OTF(Au) T(Au) + "oise,
However, a better model. for imaging correlography is

Cy (bu; N) = OTF(au) IT(au) 1 + N (B0) , (3-12)

where N.(Au) 1s additive noise, for which the appropriate filtering
operation to estimate the object's energy spectrum is

IT(8u)12 = W (8u) Tp(bu; N) (3-13)




where the filter is given by

- 4
Wb = —QTEu rw 314
M) T @ 2 e + E,(Au) ()

where Ec(Au) 1§ the variance of N (u).

Whether taking the square root of the speckle autocovariance then
f11ter1ng with Eq. (3-11) or filtering the speckle autocovariance with
Eq. (3- -14), then taking the square root, in either case the MTF is
boosted where the signal-to-noise ratio is high and it is depressed
where the signal-to-noise ratio is 1low, thereby resulting in a better
Fourier modulus estimate. Indeed, results of the computer simulations
presented in the next section demonstrate that such filtering

~ techniques improve the overall quality of 1magery recovered 1n {maging
correlography.

We conducted a series of computer experiments to demonstrate that
phase retrieval can be used to recover imagery from far-field speckle
intensity data collected over a sparse array. The procedure followed
here is essentially the same as that reported in Section 3.1, with the
exception that here the speckle realizations used to compute an
estimate of the incoherent object's energy spectrum are masked with a
pupil function H(u) emulating a sparse collecting array.

The original object data for these experiments was the same as
described in Section 3.1, For these sparse aperture simulations, we
used a Golay-type array [3.15] comprising six subapertures, Figure 3-6
shows the Golay aperture configurations used for this study together
with the corresponding OTF's and point-spread functions. The narrower- -
and wider-segment Golay arrays were both configured to have a 16 pixel
separation between adjacent subapertures; the diameters of the
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FIGURE 3-6. - GOLAY CONFIGURATIONS CONTAINING SIX SUBAPERTURES. Upper
left: Aperture functions H(u) for the Golay-6. Right: OTF's
corresponding to the Golay-6 aperture functions shown 1in the upper

left. Lower left: Point-spread function associated with the wider-
segment Golay-6 aperture.
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individual subapertures in the narrower- and wider-segment arrays were

11 and 13 pixels, respectively. In both the cases the OTF, which is
the autocorrelation of the pupil function, consists of a large central
peak surrounded by 30 satellite peaks. Although the widths of the
subapertures for both cases were chosen to be large enough that the OTF
does not drop to zero within the bandpass, the narrower-segment array
OTF does drop to low values 1in the regions between the satellite OTF
peaks. In the presence of noise, these dips in the OTF could result in
information loss at these spatial trequencies. For the wider-segment
case, the OTF stays above half of the value of the satellite peaks in
the areas between the satellite peaks, as can be seen in Figure 3-7.
For this reason the wider-segment Golay array was chosen for the
simulation. To perform the filtering operation on the complex object
data, the sampled Golay arrays ware embedded in a 128 x 128 array,
Multiple realizations of the coherent object data are then cbtained by

using different random number seeds 1in the computation of the complex
Gaussian random variables.

An estimate of the deect energy spectrum was formed by processing
multiple arrays of pupil-plane speckle intensity data computed from
realizations of the filtered coherent object, Several different
estimators of the object energy spectrum can be used, such as the one
given by Eq. (3-7). Figure 3-8 shows an example of the data that was
computed for these experiments, first the average energy spectrum of
the speckle intensity was computed by inverse Fourier transforming the
square modulus (i.e., the speckle intensity) of the Golay-apertured
Fourier transform for each simulated coherent image, and then these
speckled energy spectra were averaged together as shown in Figure
3-8(A). After a large number N of independent coherent speckle data
sets were processed in this fashion, & DC term (in fact a function,
corresponding to a scaled version of the squared modulus of an average
of the Fourier transforms of the windowed, speckle intensity arrays
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FIGURE 3-8. ESTIMATING THE ENERGY SPECTRUM OF SPECKLE INTENSITY FOR
THE GOLAY-6 APERTURE. (A) Noncoherent average of 1024 autocorrela-
tions: (B) an estimate of the dc-term; (C) ?AL minus (B); (D) the
corresponding estimate of the Fourier modulus (t

e square root of the
estimated autocovariance).
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observed over the measurement aperture) was computed, as shown in
Figure 3-8(B). This DC term was subtracted, with the result shown in
Figure 3-8(C). This result was Fourier transformed, providing an
estimate of the autocovariance of the observed speckle pattern, which
by Eq. (3-10), 1is an OTF-weighted estimate of the incoherent object's
energy spectrum. This is shown in Figure 3-8(D). ‘ o

Results of 1mage' reconstruction  experiments app\ying phase
retrieval to the estimate of the object's energy spéctrum are shown in
Figure 3-9, Figure 3-9(A) shows the averaged energy spectrum (with the
DC term removed) of the pupil-plane speckle intensity for the wider-
segment Golay-6 array shown in Figure 3-6, for which N = 10,240
independent realizations of speckle 1intensity were averaged. Figure
3.9(B) is an estimate of the Fourier modulus of the object's brightness
distribution computed by taking the square root of the Fourier
transform of Figure 3-9(A). Negative numbers, resulting from noise
associated with the finite-average approximation to an_ ensemble
average, were set to zero prior to taking the square root. Figure
3-9(C) is the image produced by applying the iterative transform phase-
retrieval algorithm [3.6-3.6] to the Fourier modulus data contained in
Figure 3-4(B). The procedure for accomplishing phase retrieval
involved applying several cycles of the hybrid input-output algorithm
(using beta = 0.7) and the error reduction algorithm until the
algorithm appeared to stagnate. The object-domain constraints used
were non-negativity (since an unspeckled, or incoherent, image is being
reconstructed) and a - loose support constraint, a rectangle half the
size of the smallest rectangle enclosing the average energy spectrum of

the observed speckle pattern. The object is guaranteed to fit within
this support constraint [3.16].
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FIGURE 3-9. IMAGE RECOVERY USING THE GOLAY-G APERTURE, N = 10,240,
(A) Average energy spectrum of the measured speckle patterns (with dc-
term removed); %B) estimate of the Fourier modulus of the object
brightness distribution; (C) 1image reconstructed from (B) using the
iterative transform (phase retrieval) algorithm; (D) Wiener-like filter
for the Golay-6 aperture; iE; filtered Fourier modulus estimate; (F

image reconstructed from (E); (G) original incoherent object; sH;
filtered, incoherent object; (I) results of filtering (C).




Note that the recovered imags shown in Fig. 3-9(C) is very noisy
compared with the original 1incoherent object, shown in Fig. 3-9(6),
although a general resemblance of che object has been recovered. Noise
in this reconstructed image is due to the fact that a finite (albeit
large) number of speckle realizations were used to.estimate the, Fourier
modulus. To reduce these noise effects, we multiplied the Fourier
modulus estimate shown in Fig, 3-9(B) by the HTQner-lfké filter of Eq.
(3-11). For these simulations, the energy spectrum of the object was
taken to be an angular (spin) average over the squared Fourjer modulus
of the true object. The noise spectrum was approximated by.a constant,
whose value was obtained by averaging the squared Fourier modulus
estimate over those higher spatial frequencies where tho‘signiljto-
noise ratio was 1less than one.  Figure 3-9(D) shows the resulting
Wiener filter used for this example. Figure 3-9(E) shows the product
of the filter 3-4(D) with the original Fourier modulus estimate 3-9(B).

Figure 3-9(F) shows the image reconstructed from the filtered
Fourier modulus estimate 3-9(E) ‘qsing the phase retrieval algorithm,
Note that the filter has significantly 1improved the quality of the
reconstructed image 3-9(F) over that 1n 3-9(C) reconstructed without
filtering., For the purposes of comparison, the original object 3-9(6)
was passed through the filter 3-9(D), with the result shown in 3-9(H).
The image reconstructed from speckle correlation measurements, shown in
Fig. 3-9(F), compares favorably with the filtered object 3-9(H),
indicating good performance on the part of the iterative transfornm
algorithm. Figure 3-9(I) shows the result of applying the Wiener
filter to the reconstructed image shown in Fig. 3-9(C). It appears, at
least for this example, that filtering followed by image reconstruction
is somewhat superior to image reconstruction followed by filtering. We
might expect to get even better results by using an improved Wiener
filter, for example, by using a better estimate of the object power
spactrum or by using Eqs. (3-13) and (3-14).
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One way to evaluate the MTF-boosting properties of the filter of
Eq. (3-11) is by inspection of the filter, which is shown in Figure
3-9(D). Notice that it has a local minimum 1in the center (at' zero
spatial frequency) and a ring of 1local maxima at a higher spatial
frequency. This compensates, in part, for the rapid drop-off of the
OTF that can be seen ‘in Figure 3-7, The ratio of the peak value of the
filter to the zero-frequency value 1is 3,38, a sizable boosting of the
OTF at that spatial frequency. This falls short of a complete
compensation due to the noise energy spectrum term in Eq. (3-11). For
the same reason, the filter drops off for the highest spat1a1
frequencies, where the noise dominates the signal,

Another way to evaluate the MTF-boosting properties of the filter -
of Eq. (3-11) is to compare the imaging results shown in Figure 3.9
with those obtained with a filled collecting aperture:. Figure:3-2 in
Section 3.1 shows the results of image recovery from simulations of
imaging correlography obtained with -a full aperture, where the
simulated speckle intensity data were filtered by a square aperture
comprising 64 x 64 ‘"detector" pixels fully encompassing the sparse
Golay aperture used above. (The width of the Golay array 1s only 55
pixels.) Except for the form of filtering used to mask the speckle
measurement data, the digital processing steps used to produce each
frame of Figure 3-2 is identical to that of the corresponding frame of
Figure 3-9. The top row of frames of Figure 3-2 correspond to image
retrieval with a full aperture, but without Wiener filtering, Note
that the resulting image 3-2(C) 1is noisy, but is significantly better
than its sparse array counterpart 3-9(C). The filter shown in 3-2(D)
is that prescribed by Eq. (3-11) with the OTF giveh by the auto-
correlation of the filled, square aperture. Figure 3-2(F) shows the
image recovered from the Wiener-filtered Fourier modulus 3-2(E) for the
filled aperture. Comparing Figures 3-2(F) and 3-9(F) indicates that
most of the key features of the object recovered in the filled-aperture




case were also recovered with the sparsé, Golay-6 aperture case.
However, some of the finer details of the object recovered in the full
aperture case were smoothed over in the Golay aperture reconstruction.
This loss of resolution for the sparse~aperture case is the result of a
smaller OTF(Au) value (i.e., a Jower redundancy), and hence a lower
signal-to-noise ratio, for larger spatial frequencies. o

The results of this. section demonstrate the possibility of
~ recovering images from nonimaged (far-field) laser speckle patterns
observed with sparse arrays of intensity detectors. The images
obtained wusing a combination of a Wiener-filtered speckle
autocovariance together with the iterative transform phase retrieval
algorithm show marked improvement over those obtaineﬁi without
filtering. The fact that the image in Fig. 3-9(F), constructed with
-sparse arrays of detectors, approaches the quality of the full-aperture
image shown in Figure 3-2(F) suggests that the MTF boosting filtering

.1s successful in removing image artifacts due to the sparse collecting
aperture. T

Figure 3-10 shows similar results for the sparse aperture, but with
only N = 1024 realizations averaged. As in the filled-aperture case,
the loss in resolution due to a lower signaleto-noise ratio is evident.

3.3 SIGNAL-TO-NOISE RATIO AND RESOLUTION

- Up to this point, we have alluded to the fact that the signal«to-
noise ratio and the quality of ‘the reconstructed images in 3maging
correlography increases with the number N of independently observed
speckle patterns, More to the point, the error in the speckle
autocovariance, and so the Fourier- modulus estimate, will improve as
the number of speckle measurements increases, whether these speckle
measurements arise from -additional speckle ‘pattérn realizations




FIGURE 3-10. IMAGE RECOVERY USING GOLAY-6 APERTURE, N = 1024. (A)
Average energy spectrum of the measured speckle patterns (with dc term
removed); (B? estimate of the Fourier modulus of the object brightness
distribution; (C) Wiener-1ike filter for the Golay-6 aperture; (D)
filtered Fourier modulus estimate; (E) 1image reconstructed from (D):
(F) original incoherent object; (65 filtered, incoherent object.




(snapshots) or from an increased redundancy in the OTF of the
collecting aperture. This flexibility, {n choosing between number of
snapshots N and collecting array redundancy, can be better appreciated
by considering the signal-to-noise ratio (SNR) of the autocovariance
estimate achieved in imaging correlography. Assuming that time-
sequential measurements of the speckle patterns are statistically
independent, we can show that the SNR of the estimate of the object's
energy spectrum at spatial frequency Au provided by the estimator of
Eq. (3-7) is given by [3.17, 3.18].

SNRG (au; N) = —-——‘-U-Ul,-;—lﬂmz—-rm (3-15)
(3 + 141 (Au) € + 31u(Au)1™)

where N 1is the number of independent speckle patterns (snapshots)

observed, p(Au) = I'(Au)/r(0) is the complex coherence factor for the
- measured speckle field, and

L= L(Au) = N OTF (Au) . (3-16)

is the number of redundant pairs of speckle intensity in the collecting
aperture measured at pixel separation Au., In the above, Ns is the
number of independent samples of intensity (or number of speckles)
contained in the measurement aperture H(u).  For the case that the
noise in the Fourier modulus estimate is dominated by statistical
fluctuations in the autocovariance estimate d{tself (not by photon shot
noise, etc.), Eq. (3-15) specifies the trade-off between array
redundancy L and number of speckle snapshots N needed to keep the SAR
of the estimate at an acceptably high level. Keeping the SNR of the
speckle autocovariance, and so the SNR of the estimate of the object's
Fourier modulus, at a high level will preserve an acceptable quality in

the image recovered using the d{terative transform phase-retrieval
algorithm,




Notice from Eq. (3-15) that the SNR increases with

(1) 1ncrea51ng aperture size [for a f111ed aperture SKR a (L)l/2
(N )1 a (aperture area)l 2

(2) increasing object diameter [SNR a (Ns)ll2 a (object area)llz]

and ' '
(3) increasing number of snapshots [SNR»a-(N)I/ZJ,

For high spatial frequencies, Ip(Au)l2 << 1 and
SNR, (Au; N) » TR OTFTRUT la(au) 12A0T (3-17)

These higher spatial frequencies are of interest 1in obtaining
. resolvable detail in the reconstructed image.

In order to test the accuracy of these SNR expressions, we
computer-simulated speckle frames, performed the correlography
. averaging, and determined the error in the estimate of lplz. Taking
the Fourier transform of the data averaged according to Eq. (3-3)
yields an OTF-weighted estimate of the power spectrum of the incoherent
object, as given by Eq. (3-10). Normalizing that to unity at zero
spatial frequency yields an estimate of OTF(Au) Ip(Au)lz. The variance
the estimate of 1412, from Eq. (3-15), i

var{I5(au) 12} [3 + 1814 () 12 + 3Ip(Au)l4]/[NNs OTF(Au)] X (3-18)
Therefore the variance of the estimate of OTF(Au) Ip(Au)I2 is

Var{OTF (8u) 15(8u)1%} = OTF(au) [3 + 1414(au)12 + 315(8u) 141/(NN)
(3-19)
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In order to compare thesry with simulation results, it is necessary.
to compute the statistics of the simulated data over large areas in the
frequency domain. However, the variability of OTF(Au) over such an
area would confuse the results. Hence we also looked at an estimate of
[6TETEU)" 1412, which has a variance

Var{{OTF(&u) |#(AU)12}“' OTF (Au) Var{lﬂ(Auiiz} |

o [3 + 141512 + 305(8u)1417 (W) (3-20)

which is independent of OTF(Au). Thus we considered the two absolute
errors '

e, (8u) = OTF(au) 15(au)1? - OTF(Au) w2 - E21)
wigﬁ'fhe natural OTF.weiﬁhting. with variance given by Ed; (3?19)y,!ﬂﬂ
e, (du) = {OTF(Au) I;(Au)l2 - JOTF(BU) lﬂ(Au)lz' - .(3422)

with JOTF weighting, with variance given by Eq. (3-20), which is not
‘weighted by the OTF., This {DTF -weighted data was obtained by dividing

the naturally-0TF-weighted dota by JOTF(Au) [the result was set to
zero where OTF(Au)=0].

Figure 3-11 shows these two absolute errors, for the filled-
aperture case described in Section 3.1. The middle-grey areas have
zero error, tha lighter areas have positive error, and the darker areas
have negative error. Figures 3-12 and 3-13 show the same thing for the
Golay aperture case described in Section 3.2. Note that for the OTF-
wefghted case, the error is maximum near Au=0 (at the center) and falls
to zero at the edges where OTF(Au) ~ 0, as predicted by Eq. (3-19).
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FIGURE 3-11., FOURIER INTENSITY ERROR FOR FILLED APERTURE.
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EI&GUREZgSIZ. SQUARED FOURIER MODULUS ERROR FOR GOLAY-6 APERTURE
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FIGURE 3-13. SQUARED FOURIER MODULUS ERROR FOR GOLAY-6 APERTURE
(N = 1024, 10,240).
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For the JOTF -weighted ("unweighted") case the errors are more

uniformly distributed across the frequency plane, as predicted by Eq.
(3-20). Because we normalize the estimated data to unity at Au=Q, by
definition we made the absolute error equal to zero at Au=0. It is
interesting to note that the correlation distance of the absolute error

appears to decrease as the number, N (K in the figures). of. frames~,'

averaged, increases. This effect is presently not understood.j N_4fv

The averaging to compute the statistics of the error was done over
a 32 x 32-pixels square area shown in Figure 3-13(A) for the Golay-
aperture case and in the same-sized square in the corner of the square
filled-aperture case. In these areas {OTF(Au)  w 0.20 for the filled
aperture and ~ 0,10 for the Golay aperture. In both cases, since the
object fits-within a rectangle of size 40 x 60 pixels embedded in a 128
x 128 array, the number of samples per speckle in the aperture plane is
(128 x 128)/(40 x 60) = 6.83.. The areas of the filled and Gulay
apertures were measured to be 64 x 64 = 4096 and 822 pixels,
respectively. Consequently, the value of N, the number of speckles in
the aperture is 4096/6.83 = 600 for the filled aperture and 822/6.83 =
120 for the Golay aperture. These areas of integration were chosen to
be at large lAul for which Is(Au)l << 1, so that the theoretical
variance expressions simplify to '

| Var[OTF(8u) 15 (au)12] = 3 OTF(au)/(NN) (3-23)
and

Var [JOTF(Au)" I;(Au)‘lzl 8 3/(N,) . (3-24)

In addition, for the JOTF" 1412 case, averages of the statistics
were taken over the entire array in order to obtain better statistics.
In this case it was also assumed that |ul << 1 enabling us to use Egs.
(3-23) and (3-24). Although it 1is not true for small values of |Aul,
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these areas are relatively small compared with the total arrhy'siié'L
consequently, when averaging over the entire array the assumption that
Ipl2 << 1 is reasonable. :

Table 3-1 compares the theoretical expressions for the noisajm;Am -
variance given by Eqs. (3 .23). and (3»24) with the measurcd varianco of

the simulated data. Individual values ‘do-not agree very wel) because
it was not possible tn 1integrate over large énough areas to get good
statistics, The last column, the ratic of the measured variance- to the
theoretical variance, shows that for roughly half ‘the cases the
measured varjance exceeded the theoretical variance, and for the’ other
half it was ess. Thus on average the measured noise variance’ roughly

agreas with the theoretical expression, giving confirmation of the
theory.

Next we compute the number of frames required to achieve a given
resolution for a particular imaging scenario. Figure 3-14 [3.19]) shows
the spin (angularly) averaged Ip(Au)I2 for the satellite object at a
finer resolution than for the version of .the 1mage shown earlier 1n
this Section. For this version the object fit within a 128 x 128 array
embedded in a 256 x 256 array, and its Fourier transform was not
weighted by an OTF function.  Hence 1its resolution was about 4 times
better in each dimension than the image shown in Figure 3-2(G). The
value of |Aul at the highest spatial frequency shown in Figure 3-14 is
therefore equivalont to collecting an array of about 128 x 128
speckles. Thus an uperture of size 32 x 32 speckles would achieve a
resolution equivalent to Au = 0.25 on this chart, at which 1#'2 ~
0.012. At half this spatial frequency (i.e., Au = 0.125 on this plot)
one would have Ipl2 ~ 0.02. Achieving resoiution at one-half the
highest spatial frequency passed by the aperture is a reasonable goal,
since for that spatial frequency OTF(Au) ~ 0.5, whereas for higher
spatial frequencies the SNR given by Eq. (3-17) drops off rapidly




~ Table 3-1

Comparison of Noise Variance Theory
with Simulations o

T'F°* °TF(60) 'ﬂ(ﬁu)lz. 32 X 32 reqions whorc |,.|2 <« 1‘iﬂi?ffff;ﬁ?55 SESAE

‘\

Aperture' - N R Thaorx L g2 Measuired ‘ ‘Ra‘t'léf"
Filled. . 1,028 . L0EE . 40E6. . 0

Filled - 1,028 10°ES ¢ 62 E-67 0,
o

2

Filled  ~ 10,000 V10 E<6 - .19 E-6
Filled 10,000 .A0E6 = .25E-6

Golay 128 .20 E-4 o 37 E-4

. . 1.8
Golay . 1,024 .25 €5 A3 E-5 . . 0.5
Golay . 10,240 o 5E6 A2 E-6 . 0.5

For. {OTF(Bu) - I-;(Au)l-z, entire array, assume lp!z <«< o

Aperturas - - - N | 22 Theory g‘_"_ﬁg_eﬂ:gﬁ e

- . ”
e
- o ., -"-

Filled D0 . SES 26E6 ... 0
Filled - 10,000 . .3 E-6 CJEES . 2

Golay - 128 .20 E-3 26 E-3 ©
Golay 1,024 .24 -4 15 E-4
Golay . .- - 10,240 .24 E-5 o513 E<B
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because both OTF(Au) and Ip(Au)l2 are decreesing repidly. Plugging
these numbers (Ns w32 x 32, OTF = 0.5, Ipl = 0.02) into Eq. (3-17)
yields SNR, ~ 0.26N1/2. Therefore in order to achieve a given SNR, for
this example, the required number of independent frames is N ~ 15 SNRZ.
[f, for example, a faithful image requires SNR = 10, then 1, 500 frames
would be required to achieve a faithful 1mege. Recall that, for this
example, since 32 x 32 speckles were assumed to be in the filled
aperture, and 1/2 the maximum spatial frequency was re;onitructed. then
this image would have a space-bandwidth product of 16 x 16 resolution

elements (e.g.t 20 cm. resolution for an "object of width 3.2m in
diameter). '

If the array size were doubled in each dimension 1in order to
achieve 10 cm resolution, then Ng = 64 x 64, keep OTF(Au) = 0.5, from
Figure 3-14 1412 ~ 0.012, and sun » 0.31 N/2; and one needs N = 10
SNR,. For SNR, = 10, this requires N = 1,000 frames. Thus from this
example, we see that as the -array size and resolution increase, the:
number of frames can decrease. However, this is not always the case:
it depends upon whether the product of the aperture length with
Ip(Au)I jncreases or decreases as the aperture length and Au increase
together; this depends upon the characteristics of the target. An
object consisting of a small collection of point-1ike scatterers or
dominated by glints will have a Ip(Au)l that falls off much more
slowly than for a uniform, very extended object. Consequently the
point-1ike objects require far fewer frames to achieve a given
resolution. Note also that for the example of the larger aperture, in
order to get the 20 c¢m resolution one could be required to gather only
N~ 4 SNR;, or 400 frames for SNR, = 10, versus 1,500 frames required
for the sme1ler aperture. Thus, we see the trade-off between the array
area (in particular its redundancy) and the number of frames in order
to achieve a given SNRC at a given spatial frequency: it is the
product NNg OTF(Au) that matters.
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The above noise analysis included only the effects of approximating
the ensemble average by averaging over & finite number of realizations.,
The variance of the noise that includes both finite averaging noise and
photon noise is given by [NN_ OTF(Au)]™! times [3.18)

v 2 [ul?
(3+unm2+3mﬁy+Fﬂﬁ%#ﬂ4 Mm)]

where the first set of terms is due to finite averaging and the second
is due to photon noise, M 1{s the number of detectors (pixels) per
speckIe, and <n> {s the mean number of photons per detector. Thus for
lpl << 1, the finite averaging noise variance is proportional to 3,
whi]e the photon noise variance 1s proportional to 4/(M <n>) + 1/(M
<> ) For M= 4, the two noise variances are equal for <n> = 1/2
photon per detector or M <n> = 2 photons per speckle. Conseqiently,
independent of the array redundancy and the number of realizations,
photon noise will be negligible as long as the number M <n> of photons
per speckle is much greater than two. - e

In summary, we have demonstrated via computer simulations' that it
is possible in principle to recover an incoherent image of a laser-
i1luminated object from multiple realizations of detected speckle
intensities collected over sparse arrays, This would permit the
reconstruction of fine-resolution images despite phase errors due to
atmospheric turbulence., The expressions for signal-to-noise ratio as a
function of spatial frequency, array redundancy, and number of speckle
realizations shows that large amounts of array redundancy and/or large
numbers of speckle realizations are required to reconstiuct an image of
large space-bandwidth product.

Sections 3.2 and 3.3 are an expansion of References 3.20 to 3,22,
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3.4 WIENER FILTERING

The Wiener-Helstrom filters given by Egs. (3-11f dhd‘(bli4) pkre
shown to improve image quality; however, theéy are probably not the
optimum linear filters. In this section, we describe two different
filters. that could yiuld better rosults and & different. formulation of

the problem that would lead ‘to 2 different filter. Since none of these -

were implemented and proven, they should be considered speculative at
this point. o

3.4.1 Recuriive Wiener Filter

In the Wiener-Helstrom filters given by Egs. (3-11) and (3-14), we
must know both an average power spectrum of the signal (estimated by
|r| and |r| , . respectively) and the power spectrum of the noise,
En(Au). The noise can often be determined by measuring the signal plus
noise in a region of spatial-frequency space where the signal is small,
In practice, estimation of the power spectrum of the object is a bigger
problem. Use of spin-averages of an ensemble of images from the class
of objects of interest is one approach. Another approach 1s to use the

realization of the given data.,  This can be done by the method that
follows. ‘ I

For simplicity, first consider the'cbnventional imaging model:

g=s*g,*+n o : (3-25$
where : go * the ideal image '
w the psf |
= noise

the measured image
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which, in the Fourier domain is
G =56 +N . (3-26)

Assuming 9o, and n are independent stochastic processes, both zero-mean

A

0o ® 3’1[60] where [3.14]

(224

o " W& (3-27)
and

s*16.1°

+

Gaussians, then the least mean-squared error 1inear estimator for °o s

L]
W ; . . 3-28
isi? |s°|%+ w2 siZ v i, 12 M

where INI2 and IG, 12 are the power spectral densities of the object and

the noise, respectivo]y. Helstrom notes - that although the images

generally will not satisfy the statistical assumption stated above,
"Nevertheless... it can be expected to be effective when applied to
these images as well.” So the Wiener-Helstrom filter is not -optimum,
but it should be effective and it is very simple to use.

A big problem with the Wiener<Helstrom filter is that, although §
is often known very well from the system parameters and the expected
INI2 can be analyzed ahead of time, the object power spectrum, IG I2 1s
usually unknown, Helstrom suggested using a constant for IG I .
However, this 1s a very bad assumption since it is well known that the
power spectra of real, nonnegative objects has a large peak at low
spatial frequencies and then drops off at higher frequencies, typically
at a rate proportional to (spatial fraquency)‘l.
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A new method is to use the data itself gs“the‘bttihate“bf'ihb"
object power spectrum. Namely, use

|6°|2 (L G2

this estimate in Eqs. (3-27) and (3 28) ylelds the Nicncr-filtorcd e

Fourier transform

6y = ¥ 0 o (3-30)
- where | ' | . o B
w . :

e I 3-31

° " siZ v InZ1e12 (631

Now lGll2 is a better estimate of IG, 18 than 1612 is. Therefore it
makes sense to form a new Hienor filtor

W, = 3 o L (3-32
1 Wuh/le,? | -3

and apply this to the data,  This supposedly will yield a better
estimate still. Thus we can get successively better approximations of

the Wiener filter, "n' and of the object's power spectrum, IGn+1I2 -
2 ' ' : _
lwnGl , via

"

. L (3-3
sTH 1271612 s

The recursive estimation of the object's power §poctrum will
- converge to a stable solution when




18,12 = 16,y 12 = 16,12

) |
L]

. 6, 3-34
||u§+|n1/mH’| (3-34
Solving for lG.lzz

16,12 ~ 0
or

a1t asi? v g ? s @N% + 1612 + N4 = 0 (3-35)

which simplifies to

!%F-[mmﬂd(mﬂ-zmﬂajmﬁ-4m@]dr].(mn>

Note that for IGI1Z > INIZ, IG.I2 approaches lGl2/l5l2 for the
positive-square-root solution, the expected result.” In this same
1imit, the negative square root yields zerc, and so only the positive
square root should be used in Eq. (3-36). Plugging this into Eq.
(3-33) yields

L sfe? - 2w D6t i 1a®)
- mﬁ[mﬂ+lmﬂ-4mﬂtdr]

(3-37a)

sﬂ1+ﬁ-4mﬂndr]

(3-37b)

21512




] 25+ 1NI12/1G12 . (3-37¢)
1512 (1= {1 - anZne?)

Note that for INI%/1612 << 1, e 3

Wy * Ts‘t‘f, [1 - l"ﬁ] . - )

161¢
and as INZ/161% o (1/8)",
N

. )

For IlellGl2 > 1/4, Eq. (3-37) is invalid. By performing the recursive
calculation of Eq. (3-33) for this situation, 1t was found that IGnl2
became progressively smaller, so that for INIZ/1GIZ > 1/4,

16,12 + 0 and Mt 0 o ~ (3-40)

It has not yet beon assessed which of the Wiener filters discussed
above {s best.

Conversion of these results to the case of 1maqing correlography is
accomplished by replacing G in the equations above by CI(Au;N).
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3.4.2 1terative Nonlinear Filter

A completely different approach to filtering is as follows. Suppose
that go(x) and g(x) of Eq. (3-25) are spatially limited to some support
defined by '

. xsgo(x) >0

r X1gy(x) = 0 (8-41)

- {.
g (X 0

for a nonnegative go(x) and g(x). Further 1t 1s assumed that the
support, Ss(u). of S(u):

. (u) {1 v uiS(u) >0 (3-42)
st 0 , usS(u) =0 )

is known, Then we can use the iterative transform algorithm to better
estimate g, (x)*s(x) and Go(u) S(u) by iteratively setting successive
estimates of Go(u) S(u) to zero wherever Ss(u) = 0 and setting
successive estimates of go(x)*s(x) to zero whenever it is negative or
where gs(x) is zero. Since functions satisfying these conditions in
both domains form convex sets, this error-reduction algorithm is a
projections-onto-convex-sets (POCS) algorithm which, by Youla's analysis
[3.23], has strong convergence properties (it may not be unique,
though) . This iterative would reduce the noise and is an alternative to
Wiener filtering.

3.4.3 Improved Noise Model

The new methods for filtering described above attempt to makeup for
the lack of knowledge of the power spectrum of the signal. In this
section we point out that additional analysis needs to be performed in
order to properly model the noise.
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The two signal-plus-noise models assumed for the filtering actually
performed were [see Eq. (3- 12)] OTF(Au) T(Au) + N and OTF(Au) lr(Au)l
Nc‘ After the image reconstruction experiments were oerformed,_the
signal-to-noise ratio, proportional to JOTF , given by Eqgs.
(3-15)-(3-17), was analyzed. Since the signal is proportional to OTF,
this implies that the noise 1is also proportional to {OTF . This fact
was verified by the analysis and digital experimental described in
Section 3.3, Thus in order to derive an optimum linear filter for
imaging correlography it will be necessary, in future research, to

derive a new Wiener-type filter based on a model in which the additive
noise is weighted by JOTF .
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4,0 IMAGING AND CORRELOGRAPHY WITH A MIXED OBJEGT RS

4.1 INTRODUCTION

In the previous section it was -assumed, .for tha -multiple .

realizations employed in imaging corriloaraphy}"thht*ﬁﬁo’épﬁ1b61f¥ii1ds”“m”ﬁ"" s

reflected by the object are diffuse, zero - mean; -and uncorrelated.
However this will not be true when the object has one or more glint
components. In this section we analyze the case in which the object's
reflectivity contains both a diffuse component and a glint, or
deterministic, component.  Here we consider not only imaging
correlography, but other imaging modalities as well. ' |

In most instances we model the imaging process as either coherent
or incoherent. From a coherent system one can get an incoherent image
either by (1) noncoherently averaging the intensities of many coherent
images or (2) by heterodyne interferometry with multiple realizations
or (3) by imaging correlography, which involves first averaging the
autocorrelations of the intensities of the aperture-plane fields to
estimate the energy spectrum of the 1incoherent object, then
reconstructing an image by phase retrieval. In the analysis of the
formation of an incoherent image from multiple realizations of coherent
data, one usually assumes that the object is diffuse. 'In what follows
we analyze the case for a mixed object, i.e. one that contains both a
deterministic component and a diffuse, variable component. All three

modes of obtaining an incoherent image from coherent data of a mixed
object will be analyred.




4.2 MIXED OBJECT MODEL

We assume that the object is coherently illuminated and ‘that its
complex amplitude reflectivity consists of two components, a
deterministic component q(x) (where x is a -2-D spatial on angular
coordinate) and a diffuse component d, (x): S

I P (=

The subscript n 1ndicatos the realization number, where dn(x) is
assumed to have different roalizations of phase, due to a rough
surface-height distribution, as the look angle changes s1ightly. The
underlying incoherent obJoct,.ii.o. ‘the object intensity reflectivity
"had it been illuminated by incoherent Tlight, of the diffuse component
is given by '

dy(x) = <ldn(x)lz>n. S  (4-2)

where <s> denotes an ensemble average.  We assume that d (x) is zero
.mean and spatially uncorrelated: '

<dn(x)>n » 0 (4-3a)

and ' |
‘ " .

<dy(xy) do(xp)>, = dy(x) &(xq = %) . . (4-3b)

In the aperture plane, in the far-field relative to the object, the

complex amplitude of the backscattered radiation is given by the
Fourier transform of the coherent object,

Fn(u) ® G(u) + Dn(u) (4-4)




where the functions represented by uppercase letters are the Fourier
transforms of the functions represented by the corresponding lowercase
letters, and u is a 2-D coordinate in the aperture plane. The
component G(u) is deterministic. The diffuse component has the
following properties: ' I T

<D, (u)>, = 0 (4+5)
and

' <Dn(u1) D;(u2)>n - I'D(u1 - "2) - Pb(‘u) (4;6)

where superscript * denotes complex conjugate, Au = Uy = Uy and, by
- the van Cittert-Zernike theorem, :

Fp(tu) = ¥ld;(x)] | (8-7)

where 7 denotes Fourier transformation. IDn(u)l2 would be a fully=
developed speckle pattern (with negative exponential point statistics)
and Dn(u) is circular-complex Gaussian (ccg) distributed.

An example of an object satisfying the assumptions above is one
with a rough component, dn(x), that rotates slightly to result in
different realizations, plus an unchanging component g(x). The
unchanging component could be a part that does not rotate or it could
be a single unresolved corner reflector or stable glint,

4.3 NONCOHERENT AVERAGING OF COHERENT IMAGES

A single realization of a coherent image of the object through an
aperture A(u), with coherent impulse response a(x) = ?’I[A(u)], is




a(x) * fo(x) = a(x) * g(x) +a(x) * dn(x5  e (4-8)

whare * denotes convolution. The average imége'intensitylis
<la(0) * 1,015, = lalx) * (12 + <la(a) * dy(a)13,

+ [a'(x) * 0" (] [a(0) * <d (x)>] +cic.  (4-9)
where c.c. denotes complex conjugate. The second term i3
'<|a(x) v d (X)l2> - <II a(xl) d A(x - “1) dx1l2>
| f f a(x;) a (xz) <, (x - x,) d; (x - x2)> dx, dxz

= [1a0e)1? dyx - xy) ax,

RO T ) R © (4-10)

where use was made of Eq. (4-3b). Using this ah& Eq. (4-3a), Eq. (4-9)
simplies to '

<lax) * 1,015, = 1a(x) * g1 + 1ax)12 * dy(x) . (4-11)

U

That is, in the noncoherently averaged intensity image of a mixed '
object, the deterministic component 1images as in a coherent system
(1.e., convolution with the coherent {impulse response, then modulus )

squared) while the diffuse component images as in an incoherent system
(1.e., incoherent object convolved with the incoherent impulse response
which is the squared modulus of the coherent.impulse response). This
result holds both for optical imaging systems and for microwave SAR.
More about this image will be said in the next section.
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4.4 HETERODYNE-INTERFEROMETRY AVERAGING

The second imaging mode 1is to measure complex fields' in the
aperture plane using heterodyne detection, then calculate the average
coherence function for multiple realizations. 'This differs somewhat
from conventional amplitude 1nterf¢rometpy,‘.since{(iqnoring aperture
effects for the moment). |

. .
Pelugs up) = <Fpluy) Fplug)>,
" '
.= G(ug) G (up) + <D (uy) D,(up)>,
+ G*(ui) <Dn(u2)>".+ c.C.

. .
is not stationary due to the presence of the deterministic term.
Direct image reconstruction from Ic(u;, u,) is not possible because the.
two terms on the right-hand side of Eq. (4-12) cannot be easily

separated out.

Consider the use of spatial integration or averaging. "We denote’

<-§-j-d% ) T (4-13)

‘We also write <<e> > a&s <> .. Including the apertdre.functions
explicitly in ‘Eq. (4-12) and spatially integrating the ensemble
average, for a given value of Au = ul'- Uy (or‘uz'- uy - Au), yields




B . )
N RO

<Alug) Awy) Tylug, upd>, = <Aluy) F zqiy“x<u5>'e*<u;s>
n <A(u ) G(u ) A(uz) ' ("2)> + <A(ul) A(uz) l‘D(u1 - u2)>
- (AG)O(AG)(Au) + S(Au) PD(Au) o ;JL_‘}T (4H14)

where (AG)O(AG)(Au) denotes the autocorrelatioﬁ of A(hj G(u) evuluatad"'

at Au, and S(Au) is proportional to the optical transfar function due
to the aperture A(u): '

S(Au) = ABA(8u) = <A(u;) A(up)>

DA OTE  (aes)

where OTF(Au) is the optical transfer function for the-apdrture A(u)
and ' : :

P R T ( 815

Inverse Fourier transforming Eq. (4-14) as a function of Au, one
gets the image

la(x) * g(x)l2 + Ig(x)!z'* dl(x) = <jafx) * fn(x)'2>n (4-17)

which is identica] to the noncoherently averaged intensity image in
Eq. (4- 11) We refer to this Amage as the incoherent image of the
mi xed obJect. It is not clear whether there exists an incoherent
object that would give rise to such an image, but for convenience we
define the incoherent mixed object, fI(x) by




1a(x)12 *'fx(x)”l.<la(x0'*-fh(x)lzbn c T (4-18)

The Fourier transform of the 1ncoherent '{mage of the incoherent mixed
object is '

S(Au) FI(Au).- (AG)®(AG) (Au) + S(Au) PD(Au) (4-19)
where FI(Au) is the Fourier transform of the incoherent mixed object.

From Eqs. (4-1), (4-2), and (4-3a), the'noncoherently averqged
object is - L ' : - . -

<, (1%, = 1912 + <1g, ()15,

+ g*(x) <dn(x)>n + C.C.

el

= 1g(x)12 +d; (x) - (4-20)
An incoherent image of the noncoherently -averaged object would be |
1) 12 % <If ()15 = ()12 * 1g(x)12 + 1a(x) 12 * dy(x) . (4-21)

hote that this generally differs from the incoherent image of the mixed
object in Egqs. (4-11) and (4-17), except when g(x) is a single dplta-
function, in which case they are the same, that is la(x)l2 * lg(x)l
la(x) ¥ g(x)l . Consequently, the noncoherently averaged object is
generally different from the incoherent mixed object. From Eq. (4-19),
the incoherent mixed object would be the inverse Fourier transform of
(Au) [(AG)@(AG) (Au)] + T (Au) However, it is not clear whether the
first term yields a reasonable "object" component in the general case.




A.5 CORRELOGRAPHY/INTENSITY INTERFEROMETRY

In conventional correlography (diffuse.component only), since Dn(u)
is ccg, the Gaussian moment theorem can be used to obtain (ignoring -
aperture effects for the moment)

'l‘v
v

<10, (up)12 'oh(éé)|2> - I<d (ul) 0, (u2)> 124 <|o (u1)|2> <10, (uy) 1%,
'ro(ul - UZ)| * Tz | - ("22)

where TD is the average intensity. $0 that tho desired energy spectrum
‘of dl(x) can be obtainad from the measured data:

gl - u) 12 = <IDn(u1)I2_IDn(q2)l2>n = (AP (¥ 1)

Since all the terms in Eq. (4-23) are stationary, spatial averaginq can
also be included in Eq. (4-23) to yield the same result.

For the mixed-obdeet case, represented by Eqs. (4-1) and (4 4), the
expression analogous to Eq. (4 22) has sixteen terms:

<IF, (uy)1? IFn(uz)I2>n
= 160up) 17 16(up)12 + |s(u1)12 <Io (u2)|?> 4 lG(u2)02r<lD.(uf)lz>
|e(u1>|2[e*<u2) <Dy (u)>, + c.c. ] + lG(uz)lz[G*(ul) <0 (u1)> + coc.]
+ I, (u)1? 10, (u) 1% |

¥ G*(uz) sbn(uz) |Dn(ul)l2>n + c.c;
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+ G*(ul) <Dn(u1) IDn(u'.",)l2>n + C.C., |
+ G*(ul) G*(uz) <Dn(u1) Dn(u2)>n + C.C.

+ G¥(uy) Glup) <D (u;) D (up)>, + cuc. (4-24)

this simplifies to " . - :

<IF, (u) 12 16, (up) 1B, = 160u )12 16(up) 12
+ 16(uy)12 <roh(u2)|2>; + 16(up)12 <1D, (u)) 1%,
+ ITp(uy - tiz)l2 +'<(Dn(ui)i2> <|Dn(u2)i2>"
+ 6%(uy) 6(up) Tpluy = up) + c.c. |
- <lFy ()13, <1y () 1By + 10 (uy = w12
6y B Tyl - v H e (428

where we have used, from Eq. (4-4),

<IF, (W13, = <IG(u) + D, (u)1%>,
u IG(u)I2 + <IDn(u)l2$n + <G*(u) Dn(“)>n + c.C.
« 16Qu)12 + <an(u)l2>n

- 1612+ Tp(0) (4-26)

Notice that Eq. (4-25) is not stationary.
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Now consider the spatial' integration of Eq.. (4-25), in which we
include explicit aperture functions: '

<A(uy) 1F(u)12 Aluy) . ROAIL
. <A(y,) <IF (u1)|2> Alup) <IF (u2)12> >
+ <A(u1) Mug) ITp(uy - u2)|2>
v <hluy) 6" ) Mug) 6lug) Toluy = ug)>y # cace  (8-20)
= (A <IF, 1% )0(A <IF 1% ) (du) + S(au) ITp(Au) 12
ot t(AG)iﬁAG)(Au)]* p(du) + c.e. (4-28)

where Au = Uy~ ué.' From Eq. (4-19) we have

S2(au) 1Fy (0)12 = 1 (AGYO(AG) (hu) 12 ' sz(nu):u'ouu)l2 |

+ [(AG)0(as) (au)]* S(au) Ty(au) + coc.  (4-29)
Inserting this into Eq. (4-28) ylelds ‘ '.
<A(u)) IF, (uy)1? Aluy) IF, (up)15

= (A <an|'2>n)o(A <|Fnlz>n)(Au)

+ s(u) 1Fy(au)12 - s"H(au) 1(a6)0(AG) (Au) 12 (4-30)




where we define

s . S(aw) >0

-1
S ™
(Au) { 0 , S(Au) =0

(4-31)

As in conventional correlography, Eq. '(4-30) relates the ‘ensemble
and'qutially‘averaged aperture=plane intensities to the sum of'qn'OTF-
weighted.power spectrum of the incoherent :(mixed) object and ‘the square
of the average intensity (or more precisely, the autocorrelation of the
ensemble averaged intensity).  However, the deterministic component
does not add to the bias in the same way as the diffuse component,
requiring the subtraction of the additional (the 1last) term in Eq.
(4-30). ' o

IGn(u)l2 can be determined as follows. For Up * Uy = u (Au = 0),
Eq. .(4-25) gives :

<IF ()1 %, = (<IF (u)1%,)2 + T3(0) + 216(u)1% rp(0)  (4-32)

where we have used the fact that rD(o) is real valued. Eqs. (4-26) and
(4-32) constitute a set of two simultaneous equations in two unknowns,
IG(u)l2 and PD(O). Their solution yields

16u)1? = 2(<IF (152 « <IF, ()1, (4-33)
and

Fp(@) = <IF (w13, - 16(u)12

- <IF %, - l2@if (B - <F W% . (-30)
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For a complete solution of IFI(Au)l2 from Eq. (4-30), one must
determine the last term in Eq. (4-30) from the data, a task yet to be
accomplished.

Note that for G(u) = 0 (i.e., no deterministic component), Eq.
(4~30) reduces to the conventional correlography result, and for7Dn(u)
=0 (i.e., only a deterministic component), the last two terms (the
interesting ones) in Eq. (4-30) cancel, leaving a useless equality.

Single-glint case.

Now consider the specific case for which the ddtarministié
component of the object is & single delta function (a glint or corner
reflector):

g(x) = b &(x xo) . y (4-35)
Then we have

G(u) = b cxp(-iZcuxo) . (4-36)

4%un%n

2
(0 = 1bi€ 8(x - x)) + dj(x) , (4-37)

FI(Au) = 1bi? exp(-i2r Au “o) + FD(Au) , (4~38)

WﬂMHZ-Wﬁ+I%u@F

+ Iblz exp(i2x Au xo) PD(Au) + c.C.




4%mn%n-wﬂ+q%mn%n-wﬁ+rﬂm

& <IFnlz>“ a (4-40)
and '

<IF, ()%, = 1614 + a1b12 1(0) + 2r3(0)
RIAL  (a-a1)

the latter two equations being independent of u. For this object, Eq.
(4-30) becomes : =

<Aluy) 1F,(up) 12 Aup) IF, ()15
« s(80) [(IF1%)% + 1F (8u)1% - 1b14]
= sa) [1IF, 12 - (<F B2 ¢ <iF 1S ] (-02)
where we used, from Eq. (4-33),
014 = 1614 = 2(<F 152 - <tF b, (4-43)

Therefore we can solve for IFI(Au)J2 for this object in terms of
measurable quantitiess

S(Au) IFp ()12 w <Afug) 1F ()12 AGup) IF, ()15

+ S(Au) [(<|F.n|2>n)2 - <|Fn|‘>n]

= <Mug) 1F ()12 Auy) IF, () 1B - S(au) Var (IF17)
(4-48)




where Varn(anlz) is the variance over the ensemble of intensity
realizations. The incoherent image of this type of mixed object can be
reconstructed from Eq. (4-44) via phase retrieval with the help of a

nonnegativity constraint.
Note that this differs from the usual 1112 - T2 averaging done for

the case of a diffuse object only. In that style of notation, Eq.
(4-44) is equivalent to :

IFI(Au)l2 =<, - ;! + 15 | (4-45)

Since for a fully-developed speckle pattern

Tg - o1 (4-46)
this estimator is equivalent to
IF 1% =<y, - 22 415 = ety - 1o (8-47)

for the case of G(u) = 0. That {s, the estimator of Eqs. (4-44) and
(4-45) gives the correct result whether there ° a single glint or no
glint, whereas the other estimators, such as Ill2 - T2 give the wrong
answer if there is a single deterministic glint. The presence of a
glint can be detected by computing Eq. (4-43).

Notice that ensemble averaging alone and ensemble averaging
followed by spatial averaging yields useful information. However, we
were unable to find useful information 1in spatial averaging alone for
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tﬁe case of a mixed object. (And spatial averaging followed by
ensemble averaging 1is equivalent to ensemble averaging followed by
spatial averaging: <<o> > = <<o>>, for the quantities analyzed.)

This type of image formation would be unaffected by atmospheric
turbulence as long as nonisoplanatism and scintillation are not présent
since only aperture-plane 1intensities are measured. However,
atmospheric turbulence would severely 1imit conventional coherent
imaging or heterodyne interferometry. ' '




5.0 COHERENT IMAGE RECONSTRUCTION FOR OBJECTS HAVING GLINTS

5.1 INTRODUCTION

Ordinarily when we image a space object with a large-aperture
earth-bound optical imaging sensor, the resolution is very poor owing
to phase aberrations caused by the turbulent atmosphere. An.approach
to circumvent this problem, initially studied over a decade ago, is
laser correlography [5.1]. It {involves the 11lumination of the space
object by a coherent laser and the detection of the backscattered
intensity pattern in the aperture plane. This speckled intensity
pattern is the squared modulus of the Fourier transform of the complex~
valued object reflectivity. Ordinarily this allows only an
autocorrelation of the object, not an image of the object, to be
computed.

For certain favorable object geometries, such as objects having
separated parts, an i{terative Fourier transform algorithm has been
developed that retrieves the phase of the Fourier transform of the
object and thereby permits a diffraction-limited complex-valued image
to be reconstructed [5.2]. Unfortunately the cliass of objects for
which this approach currently works is too limited. An approach that
works for general objects is that of imaging correlography [5.3]
described in Section 3. By averaging over the autocorrelations of many
aperture-plane speckle intensity patterns, one arrives at the modulus
of the Fourier transform of the .incoherent object (the object had it
been 11luminated by an incoherent source such as the sun). In this
case the ideal image is real-valued and nonnegative, and an image of a
general object can be reconstructed from the Fourier modulus data using
the iterative transform algorithm employing the powerful nonnegativity
constraint. This concept has recently been verified in laboratory
simulations [5.4]. Unfortunately in many circumstances it may be
impractical to collect a large enough number of snapshots of aperture-
plane speckle patterns to arrive at a good statistical estimate of the
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incoherent Fourier modulus. For this reason it 1sidf'br5a% interest to
be able to reconstruct a coherent image from a single snapshqt of data,
despite the difficulty mentioned at the beginning of this paragraph.

It has been observed that satellites frequently have strong glint
returns (mirror<1ike reflections off ‘solar 'panels, for example). It
has long been known ‘that if there is a single glint sufficiently
separated from the rest of the object, then by the holographic method
[5.5] one can easily reconstruct a coherent image from & single
snapshot of data. However; such ideal glints would be relatively
‘uncommon. Glints centered on the obJect ‘ar mu1tiple glints wou]d
- ‘prévent the use of the holographic approach.”

-In this section we describe methods developed for reconstructing an
image having glints from a single  realization of the intensity of the
aperture-plane speckle pattern from a coherently 11luminated object.
In Section 5.2 the most -successful 'method we developed is described.
It consists of threé successivel algorithms. In Section 5.2 {s shown
reconstructions using just the {terative transform algorithm. A
ecursive reconstruction algorithm that gave limited success is
described in Section 5.3. In Section 5.4 the effect of a large gliﬁt
‘on the quantization error of the measured data is analyzed. ‘

5.2 THREE-ALGORITHM METHCD

In what follows, we describe an approach: that permits 2 high-
fidelity image to be reconstructed from a single snapshot of aperture-
plane intensity data for the case of nonholographi¢ multiple glints

-1ocated on the ‘object.  The abpfoach 'consists' of three algorithms
employed successively. The first algorithm reconstructs the‘glints
only, both their positions and their compléx values. It involves the
triple intersection of transiates of ‘thé autocorrelation function. The
second algorithm uses the reconstructed glints along with the aperturs-
plane intensity data to arrive ‘at a partially reconstructed cohe‘ent
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image of the entire object. It 1is modification of the AF-synthesis
algorithm in x-ray crystallography. The third algorithm completes the
reconstruction of a high-fidelity 1image using information about the
support or size of the object. It is the same iterative Fourier
transform algorithm that previously had only been effective for special
classes of coherent objects; however, it 1is effective for general

objects having glints that are partially reconstructed by the first two
algorithms.

In the subsections that follow, we briefiy describe each of the
three algorithms that make wup the 1imaging approach and show
reconstruction results. : ‘

5.2.1 Reconstruction of Glints

In what follows we assume that the object consists of both a glint
(or multiple glints) component g(x), and a diffuse extended component,
d(x),

f(x) = g(x) + d(x) | (5-1)

where x is a 2-D coordinate. It is assumed that the Fourier intensity,
IF(u)Iz, is detected, where F(u), G(u) and D(u) are the Fourier
transforms of f(x), ¢(x) and d(x), respectively. From the Fourier
intensity we can compute the object's autocorrelation

re(x) = [g(x) + d(x)] @ [g(x) + d(x)] = FL0IF@)1%)
= g(x) 8 g(x) + d(x) @ d(x) + g(x) 8 d(x) + d(x) 8 g(x)
= rg(x) + rg(x) + g(x) @ d(x) +d(x) 0 g(-x) (5-2)

where F denotes Fourier - transformation, € denotes cross-correlation,
and rs denotes the autocorrelation of f.




If the glint energy 1is large comparod with thh onorgy of the“
~diffuse component .0, {f

3 1g(x)12

is on the order of one or greater, than the peaks of r (x), the
autocorrelation of the glints, will exceed the other terms in Eq.
(5-2), enabling the glint information to be isolated from the other
terms. by a thresholding'oporation (set all values below some threshold -
to zero). Once r_(x) is isolated, then the q11nts can be reconstructed
as described below. -

.- We model the glints by
g(x) = %g; Oy blx - xmi | (5-4)

where M is the number of glints and b(x) is the impulse response of the -
imaging system [or is a delta function {f g(x) represents the object].
The autocorrelation of the glints is given by

rg(x) = g(x) ¢ g(x)

- 'g n% Oy Dlx = Xy + Xp) (5-5)

If the glints are spaced nonredundantly, that 4s 1f no two vector
separations between distinct pairs of glints is the same, then

rlxy = %) 2 4f) b(0) « f,f, (5-6)
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where for mathematical simplicity we have normalized so that b(0) = 1.
Eq. (5-6), which embodies the fact that each glint in the
autocorrelation arises from the product of two glint values in the
object, allows the autocorrelation of the glints to be unraveled. This
unraveling can be done in a number of ways, as described in Reference
5.6, Sections 5 to 7. The method we used is a modification of one of

the methods to which Ref. 5.6 alludes. It consists of the following
steps.

1. To find the glints {n rf(x) that constitute rg(x), threshold
lrf(x)l to dafine an autocorre1ation support function for r (x)

1, | where Irf(x)l2 2 threshold
ro(x) = { (5-7)

0, otherwise

Then we assume that r (x) =~ rs(x)rf(x) except at x=0 where rd(x)
~ corrupts it.

2. Reconstrucf the support of the object glints usiﬁg the
autocorrelation support tri-intersection [5.6]

rgp(x) = rg(x) ro(x = xpayy) rolx = xpan) (5-8)

where Xnax1 is the location of the maximum of Ir (x)| outside x=0,

and Xmaxk is the location of the maximum of Ir (x?lr (x)r (x=x

maxl)
outside x=0 and x=x

maxl’

3. Multiply rsl(x) by rg(x), which can be shown to yield either

rsl(x) rg(x) ] };: Igml2 b(x) + g: > On b(x - Xp * xk) (5-9a)
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, U

or

¢

" ]%:_Igml b(x) g, E;E g, b(x q‘*k_f_xh) ‘:.(S-Qb)

4. Using a second support function, detprmine lqkl, whjéh,is_;hélvgiue
at x=0, by the method described. in Section 5.1.5. This pracedure
“{s required because rg(x)'is'COrrupted at x=0 by ry(x). :

§. Divide Eq. (5-9) by g, ® Ig,| to get

[y

glint image = E;E Oy DX = Xy #k? | (5-102)
or

.'E;E q; b(x - X+ xn) | (5-10b)

where (5-10a) represents an image of the glints (except gy+ which
was already reconstructed) and (5-10b) represents a twin (complex
conjugated and rotated 180°) 1image of the glints. Either-is an
admissible solution when only the autocorrelation or the Fourier
intensity is given.

This process of reconstructing the glints is i1lustrated in Figure
5-1. The object, in Fig. 5-1(a) is a complex-valued, speckled image of
a model of a P72-2 satellite (the diffuse part) with three deTta-
function glints artificially added on the middle part of the body of
the satellite. Previously this was thought to be the most difficult
case for imaging using glints. (For a holographic reconstruction there
must be only one giint, and it must be separated from the body of the
satellite.) In this and all the figures, the modulus of the complex=-
valued images are shown. Figure 5-1(b) shows the autocorrelation
function computed from noise-free Fourier intensity data. Figure
5-1(c) shows the results of thresholding the autocorrelation function
re(x) to isolate rg(x). the autocorrelation of the glints. M =3
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B) and (C).




glints in the object produces MaMel w7 glints in rg(x). The five-
step procedure described above was then used to successfully
reconstruct the glints alone, shown in Figure 5-1(d).

This experiment was repeated for several different values of the K-
ratio, as defined by Eq. (5-3).  The normalized root-mean-squared
(NRMS) error of the glint reconstructions 1is plotted in Figure 5-2 for
two different cases: the three glints positioned on the body of the
satel1ite as described above, and the same three glints positioned just
off the body of the satellite. The positions of the glints with
respact to the satellite body mado 1ittle difference. The glints were
reconstructed accurately (NRMS error < 0.20) for K & 1.0.

The examples described above were obtained with a simulated object
using simplified delta~function glints. For the case of realistic
diffraction-1imited glints (being impulse responses spread over more
than one pixel), a modification of the firsi step of the 5-step
procedure is required. It involves finding the glints in the
autocorrelation by a process related to the CLEAN method from radio
astronomy rather than by simple thresholding.

At this point there are several possible approaches to using the
reconstructed glint dinformation, g(x), to help to reconstruct the
entire object, f(x). In what follows we describe only one of the
approaches, the one that appeared to be most effective: first obtain a
partial  econstruction by  AF-synthesis, then complete the
reconstruction by the iterative transform algorithm.

5.2.2 AF Synthesis Algorithm

AF Synthesis is a method taken from x-ray crystallographic
reconstruction, adapted by Baldwin and Warner for interferometric
astronomical 1imaging [5.7] and further adapted here for coherent
reconstruction when glints are known. It works poorly when little
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about the image is known, but works well when parts of the image are
known well. This 1s the case 1{f the glints are reconstructed as
described in the previous section.

One iteration of AF synthesis is as follows. At the nth iteration
we assume we know some part gn(x). of the image, where

f(x) = ga(x) + dp(x) (5-11)
and dn(x) is the unknown part of the 1{mage. For the first {teration
gl(x) {s the image of the glints reconstructed by the method described

in the previous section and dl(x) is the (unknown) diffuse part of the
object. The modulus squared of the Fourier transform of Eq. (5-11) is

IF(u) 1% = 16,(u)1% + 6o (u) Dy(u) + Gy(u) Dy (u) + 10,12 . (5-12)

Taking the Fourier transform, Gn(u), of qn(x) and multiplying it by
lF(u)l/lGn(u)l ylelds

G, = G, IFI/16,|
- (16,12 + 6,0, + G0, + mnl"’]l/2 8,/ 16,
» 6, + 0/2 + (6, 10,12 + 620])/(216,1%) . (5-13)
using a Taylor-series expansion assuming |G, large. Therefore

' 2. 201 e 2
26, - 6, 5 G, + 0, + (6, 1012+ cZ0;) /16,17 . (5-14)
\-—-\F—J .
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Inverse Fourier transforming yields
Zg;(x) - gn(x) = f(x) + other terms. (5-18)

That is, by subtracting the input image, gn(x), from twice the output

image, ga(x), we reconstruct the entire image, f(x). However, the

"other terms" severely corrupt much of the desired image.

Nevertheless, the brightest points in Eq. (5-15) outside the previously

known image points, gn(x). are most 1likely to belorig to the object,

f(x), rather than to the other terms. Thus we take the brightest new
points resulting from the computation of Eq. (5-15) and add those to

gn(x) to form gn+1(x) which represents a larger known portion of the

image. This is done repeatedly until a reasonably complete partially--
reconstructed image appears,

Figure 5-3 shows the results of the application of AF synthesis.
Figure 5-3(a) shows the same coherent object with three glints on the
body, and Figure 5-3(b) shows the same reconstructed glints as for
Figure 5-1. (Any difference in appearance from Figure 5-1 is due to a
difference in exposures when photographing the images.) Using the
reconstructed glints as gl(x), Eq. (5-15) was computed, the result of
which is shown in Figure 5-3(c).  Much of the object is apparent in
Figure 5-3(c), but there is a high 1level of artifacts. Figure 5-3(d)
shows the improved results after 12 i{terations of AF synthesis, The
Tocations of the points assumed to be known at this stage are shown in

Figure 5-3(e). Further iterations of AF synthesis resulted in little
further improvement.

§.2.3 Iterative Fourier Transform Algorithm
The iterative Fourier transform algorithm involves repeatedly

Fourier transforming an estimate back and forth between the Fourier
domain, where the measured Fourier intensity is reinforced, and the
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FIGURE 5-3. IMAGE RECONSTRUCTION BY THE THREE-ALGORITHM METHOD. (A)
The object; (B) the reconstructed glints (from Figure 5-1); (C) output

)
from one iteration of AF synthesis; (D) output from 12 iterations of AF

synthesis; (E) locations of points assumed to be -known in (D); (F)
Zm?ge reconstructed by the iterative transform algorithm staring with
D . .
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image domain, where a support constraint i{s enforced. The support
constraint, i.e. knowledge that the image is zero outside some well-
defined area, can be derived from the autocorrelation of the object
[6.6]. The details of the iterative Fourier transform algorithm are
described elsewhere [5.2,5.8,5.9]. The partially reconstructed image
shown in Figure 5-3(d) was used as an input to the iterative Fourier
transform algorithm for which we employed a supports constraint in the
form of a crude rectangle inside of which the object loosely fit, The
image reconstructed by the iterative Fourier transform algorithm is
shown in Figure 5-3(f). It 1is an excellent reconstruction of the
object shown in Figure b5-3(a), despite having assumed total loss of
phase information and despite the fact that the glints were in the most
unfavorable locations. (Prior to this work it was thought that

multiple glints imbedded within the object would be the most difficult
case,)

This experiment was repeated for several K-ratios (glint energies),
and the results are shown in Figure 5-4 and plotted in Figure 5-5.
Very recognizable images were reconstructed for K 2 2 (image NRMS error
$ 0.35). For K = 5, the simulation experiment was repeated for various
levels of photon noise in the intensity data. The results are shown in
Figure 5-6 and plotted in Figure 5-7, Recognizable 1images were
reconstructed for 107 or greater photons per intensity array of 128 x
128 samples (or about 60 x 40 = 3200 speckles), equivalent to about 600
photons per sample or 4000 photons per speckle.

5.2.4 Summary of the Three-Algorithm Method

Prior to this work, coherent image reconstruction from a single
snapshot of far-field laser speckle intensity data was possible if the
object included a single well-separated (holographic) glint or a very
bright glint beyond the edge of the diffuse part of the object. We
have developed an approach for raconstructing objects having much less
favorable glints, including multiple glints that may be located within
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the diffuse part of the object. The approach consists of three
successive.algorithms: (1) a triple intersection of the autocorrelation
function that yields an image of the glints alone, (2) the AF-synthesis
algorithm that uses the image of the glints together with the Fourier
intensity data to yield a partial reconstruction of the entire image,
and (3) the iterative Fourier transform algorithm that uses the
partially reconstructed image together with the Fourier intensity data
and a support constraint to complete the reconstruction. For the
example investigated having three delta-function glints, good
reconstructions were obtained for K = (glint energy)/(diffuse/energy) 2

2 and 4000 photons per detected speckle (i.e., a relatively high 1ight
level).

Further research is required to optimize the approach and to
quantify performance for diffraction-limited (as opposed  to delta-
function) glints, to extend the method to work for extended glints, and
to demonstrate the method on laboratory experimental and field data.
5.2.5 Determining ngl for Glint Reconstruction

To determine the value of the first glint, lgkl, perfbrm the
following steps.

1. Sum over the squared modulus of rsl(x)rg(x) for mpk:
2 2 2 2 . 4
C, = lgl g 1% = g, i g 1c = 1g, )" (5-16
2. Reconstruct a second image support:
rsp(x) = rg(x) ro(x - Xmax1) "s ¥maxj) (6-17)

where x...; 1s the location of the largest peak of rs(x)rs(x -
xmaxl)rg(xg that is outside rsl(x). : '
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3. As in Step 1, sum over the squared modulus of rszrg(x) for nfj:
c - |gJ|2 n}& Ig, 12 = IgJIZnZ 1g, 12 - ]ng4 . (‘5-18)
4, Llet
Cyk ™ *(Xpax1) = *ixg = xk).. ng: ‘ (5-19)

5. Solve Eqs. (5-16), (5-18) and (5-19) for |gk|2=

6. Assume that gg has zero phase (we can arbitrarily set any one phase
value to whatever we want):

gk - llgkl . .(5"20)

Note that a simple method 1is possible if the object had no diffuse
part; however, the diffuse part of the object will usually make a
strong contribution to rf(O). making this 5-step method necessary.

5.3 RECONSTRUCTION WITH ONLY THE.ITERATIVE TRANSFORM ALGORITHM

Although the three-algorithm method discussed in the previous
section is generally the most robust way to reconstruct an object
having glints from a single snapshot of Fourier intensity data, it is
also possible to reconstruct using only the iterative transform
algorithm (the third algorithm)., In this case it is assumed that by
inspection of the autocorrelation function, computed from the measured
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Fourier intensity, we can détermine that ‘thére are one or more glints
in the object. Furthermore, 1if there are two glints, then the
separation of the glints can also be determined from the
autocorrelation.

To start the iterative transform algorithm, two different starting
estimates were tried. First, since the autocorrelation function
contains the desired image as one of - its terms (as described in Sect.
5.3), we chose as an initial estimate a windowed version of the
autocorrelation function. Second, we chose the initial estimate to be
a bright glint (or glints) surrounded by random noise. ‘In practice the
latter initial estimate worked better. It was assumed that the
approximate location of the glint (qr‘glints) was known,

Figure 5-8 shows reconstruction ‘results for the case of a single
bright glint added near the top center of the speckled satellite image.
The ‘support constraint, assumed known  a priori, was a rectangle just
enclosing the object with the glint. A plot of the rnormalized RMS
error of the reconstructed images as a function of the K ratio {s shown
in Figure 56-9. The reconstructions are very good for K greater than
0.25. These reconstructions are better than those of the previous
section because (1) since there 1s only one glint, that single glint
contains all the energy implied by the K ratio, making it relatively
brighter than any of the three glint. - for the previous case, for any
given value -of K, ‘and' (2) “peconstruction ~ from three  glints s
inherently much more difficult than from a single glint. For the cases
of K = 1;0 and-0.5, Poisson noise was added to the Fourier intensity
data. The errors in the corresponding reconstructed images is shown in
Figures 5« lo(a) and (b) reSpectively. ' -

Figure §-11 shows reconstruction results for the case of a pair of
glints, one of which is in the same position as the case above, and the
second ‘is nearer to the center of the object.” Figure 5-12 shows a plot
of the normalized RMS error as a function of glint strength. Very good
reconstructions are obtained for K > 0.5,
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FIGURE 5-8. IMAGES WITH A SINGLE GLINT RECONSTRUCTED BY THE ITERATIVE
TRANSFORM ALGORITHM, FOR VARIOUS K RATIOS. '
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FIGURE 5-11. IMAGES WITH TWO GLINTS RECONSTRUCTED BY THE ITERATIVE
TRANSFORM ALGORITHM, FOR VARIOUS K RATIOS. :
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Diffraction effects due to the aperture are not included in this
simulation. The inclusion of diffraction effects would yield poorer

performance; further research is needed to develop improved algorithms
for this case.

5.4 RECURSIVE AUTOCORRELATION ALGORITHM

Inftially a  recursive autocorreiation-based reconstruction
algorithm was investigated. It was later overshadowed by the
algorithms described above, but we include it here for the sake of
completeness.,

We assume that the object has a single glint of magnitude a and &
‘diffuse part, d(x), so that it can be modeled as

f(x) = a §(x) + d(x) - (5-21)

and its autocorrelation function as
re(x) = 1212 6(x) + ry(x) + a* d(x) + a d*(-x) (5-22)

which contains within it a representation of the diffuse part, d(x),
multiplied by a*. Unless the glint satisfies the holography condition,
however, the other terms will overlap the desired term, a* d(x), making
it not immediately available. If the glint does not satisfy the
holography condition but is to one side of d(x), then only the term
rd(x) overlaps the desired term. - Under that circumstance, the
following recursive reconstruction algorithm is possible, After
estimating the glint strength, first estimate a* d(x) by windowing one
side of rf(x). Then form a second estimate by subtracting from rf(x)
an estimate of rd(x), computed from the estimate of q(x), and windowing
the result. This process is continued until no further changes are
made. In practice this method requires a strong glint and was not as
successful as the methods described in the previous sections.
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5.5 EFFECT OF GLINT STRENGTH ON DATA QUANTIZATION ERROR

It is assumed that the laser-illuminated object has a glint
component and a diffuse component. It may be that the glint, say from
a flat panel, appears only for certain angular orientations of the
object. A problem is that the energy from the glint can far exceed the
energy from the entire diffuse component of the object. Then aperture-
plane detectors having a finite dynamic range (or a finite number of
quantization levels) may have the information about the diffuse

component overwhelmed by the energy from the glint. In this section
this problem is analyzed.

For the case of a single glint, the model for the object is again

f(x) = a &(x) + d(x) - (5-23)

which has Fourier transform

F(u) = a + D(u) (5-24)

where D(u) is & zero-mean Gaussian random v&riable with variance 02.
The detected quantity is the intensity

IF(u) 12 = la + D(u)1?

- a2 + 2 a Re[D(u)] + ID(u)IZ (5-25)

where we have used the fact that the phase of the glint, a, can,
without loss of generality, be set to zero. Letting w = lF(u)I2 and g

= a2, the intensity follows a modified Rician or non-central Wishart
distribution: '

Py = (20)°1 expl-w/(267)] expl-/(269)] 1, (VW5 /%) . (5-26)




To simplify this further. we can define intensities normalized to the
energy in the diffuse part of the obJoct' repiacing w/(Zo ) by w and
g/(Za ) by g, we have _

y (w) - g™ e 1 [zma'] N (X))
The mean and variance of w are 1 +.g and 1+2 g, respectively.

" The assumed quantization operation is 11lustrated in Figure 5- 13,
which shows a linear quantizer with an offset q and N quantization
intervals, each of width dw. - For a given value of the relative glint
strength, g, the mean-squared error due to the quantization rule on the
probability distribution pw(w) can be numerically computed.

Optimum quantizers were derived for two cases: no glint and a very
strong glint. This was accomplished by arriving at a signal-to-noise
expression as a function of N, Aw, and-4, and then solving nonlinear
equations for the optimum Aw and 7 using Newton ] method. The results
are summarized. in Table 5«1,  « - S

Table 5.1 Optimum Quantizer Intervals

For zero glint | 'For larg__glint
N _Aw, . SRN(db) - _Aw SRN(db)

256 .04368 37.27 ,03076 40,57
512 " :.02432° 42.43 .01650 46.04
1024~ .01341 .  47.65 - .00879 51.55
2048 .00738 52,94 ..00465  67.11°
4096 00399  58.28 .00245 62.71 :

The signal-to-noise ratios (SNR's) of four quantizers were compared
for the case of a.design optimized for: g « 10,000 (an enormous maximum
glint strength), for various values of N from 256 to 4096, and for
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values of an actual glint strength of 0, 10, 100, 1,000, and 10,000.
The results are shown in Table 5.2, From this table it can be seen
that with a fixed step size (optimized for g = 10,000), the SNR for the
smaller values of g is very poor, The addition of a dynamic, optimum
step size yields dramatic improvement in SNR for the smaller-glint
cases. The same effect as a dynamic step size can be achieved by an
automatic gain control (say, attedua@ing the 1ight arriving at the
detector when the glint becomes very bright). The addition a dynamic,

optimum offset yields additional gains- in SNR, especially for the
brighter-glint cases. '

The reason that automatic gain control {s important is seen from
the fact that in the second term, the 1nformation-carry1ng'quantity, of
Eq. (5-15) is multiplied by the glint strength.

The major conclusion from this study 1s that in order to allow for
very large glints, we should have a dynamic or adaptive quantizer. The
most important feature of the dynamic quantizer would be a variable
step size qw. Thi# could be achiéved by an automatic gain control.
Helpful, but less important, is to allow for a dynamic offset 9. The
results were derived for very large glints; the optimization of the
quantizer for intermediate-strength glints, which are likely to occur
in practice, would require additional research.
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6.0 IMAGING WITH PARTIAL PHASE INFORMATION

In this section and in Section 7, we describe methods developed for
using partial phase informatien 1in the phase retrieval/image
reconstruction process. For the most difficult objects to reconstruct
(complex-valued, having no glints or separated parts), some additional
information is essential to obtain a reljable reconstruction, given our
present algorithms. One kind of such additional information is partial
phase information. Partial phase information can come, for example,
from an imaging system that inherently measures or determines the
phase. If the partial phase information is nearly complete, so that
using that phase yields a useful image, then the phase-retrieval
processing can be thought of as a way i:.clean up the image to improve
its quality. This is equivalent to reducing the errors or filling in
the gaps in the given partial phase information. If the partial phase
information 1s very incomplete or noisy, then no useful image would
result from it, and the phase-retrieval processing would be forming the

image. in the first place, with the partial phase information helping it
to succeed. '

Two major cases of partial phasb information were considered: (1)
phase known well over a small aperture, and (2) noisy phase over the
entire aperture. In the first case, it 1{s a matter of filling in the
missing phase, but most of the phase 1{s missing. In the second case,
it is a matter of correcting the errors in the given phase,

Two scenarios that would correspond to the first case are as
follows. Suppose that the object is coherently illuminated with a
laser, and intensity measurements are made 1in an aperture plane of the
optical system, In addition, optical field measurements are made over
a smaller aperture imbedded in (or contiguous with) the intensity
measurements. The optical field measurements could be performed, for
example, by heterodyne detection or by two intensity measurements in
different planes and the fields reconstructed by the Gerchberg~-Saxton




algorithm. These optical fields would be aberrated by etmospheric
turbulence. In addition, the small aperture would also have a
wavefront sensor that measures the atmospheric wavefront error,
Aberration-free optical field data could be obtained over the small
aperture by subtracting the phase due to the atmosphere from the phase
of the measured opticel fie1d. ' '

The second scenario represedting the first case would be for a
system in space having a small, diffraction- limited telescope making
optical field measurements, imbedded in a 1larger aperture over which
the aperture-plane intensity measurements are made. In this caee a
wavefront sensor would not be needed since there would be no
atmospheric turbulence to aberrate the optical deta for the small,
diffraction-11imited  telescope.

Many differént imaging systéms could provide} data for the second
case, that of noisy phase known over the entife’epertdre., They include
active imaging ‘modalities such as the Itek/Western system, triple
correlation of aperture-plane intensity, and FOCI and passive imaging
modalities such as astronomical speckle interferometry using triple
correlation and aperture-plane interferometry hsing phase closure.

The basic approach to phase retrieval and image reconstruction
taken for these scenarios was to use the iterative Fourier transform
algorithm to take advantage of all the available data and constraints
to form the solution. This approach allows for the combination of a
variety of disparate types of {information, such as Fourier modulus
(square root of intensity), Fourier phase, object-domain support
(finite extent) constraint,  a&nd nonnegativity (applicable for
incoherent images). “For the case of -phase know well Gver a small
aperture, a variation of the iterative transform a]gdr{thm. called the
expanding-weighted-mask algor{thm, was developed This fnitial attempt
with the expanding-weighted-mask e1gor1thm gave results that were only
partially successful: they ‘were promising but very prelim1nary and
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incomplete. (In a separate, later program funded by the Naval Research
Laboratory, this approach was expanded upon and optimized, and yielded
very good reconstructed images.) Those preliminary results are
described in Section 6.1. For the case of noisy phase over the entire
aperture, a variation of the 1{iterative transform algorithm, called the
phase variance algorithm, was developed, as described in Section 6.3.
In addition, an alternative, entirely new approhch was developed for
that case: 2-D shear averaging, which 1s described in Section 7. One
other case that was briefly explored was that of knowing one bit of
phase, In that case, reconstruction was easily achieved with a
windowing of the initial image computed from the given phase followed
by cleaning up with the 1{terative Fourier transform algorithm. This
last case, mostly of academic interest since it does not naturally
occur in currently known imaging sensors, is described in Section 6.2.

6.1 THE EXPANDING WEIGHTED MODULUS ALGORITHM

If the Fourier intensity is measured over a large aperture and the
phase is measured over a small aperture imbedded in the large aperture,
then 1t is possible to use that known phase to help to retrieve the
phase over the large aperture. This can be accomplished by enforcing
the known phase together with all the other available information
(Fourier modulus, object support constraint) using the iterative
Fourier transform algorithm.

The support constraint can be gotten from the available data in one
of two ways, First, one can use a triple intersection of the
autocorrelation support computed from the Fourier intensity to put an
upper bound on the support of the object [6.1]. Second, from the
small-aperture phase combined with the measured intensity over the
small aperture, one can gets a diffraction-limited, but low resolution
(owing to the small size of the aperture) image. A support constraint

can be formed by an appropriate threshoiding of this low-resolution
image.




The initial estimate for the iterative transform algorithm can be
gotten by simply using the complex-valued low-resolution image or by
fi1ling the support constraint with complex-valued random numbers.

When the iterative transform'algorithm was run with either of the
two initial estimates and using either of the two support consiraints,
and enforcing the small-aperture phase, it stagnated without converging
to a solution. Essentially random phases were produced outside the
small aperture. Since the ratio of the area of the large aperture to
that of the small aperture was chosen tb‘be a large number, the random
phases outside the small aperture overwhelmed the influence of the
correct phases within the small aperture. |

" In order to combat this problem, we began development of the
expanding weighted modulus algorithm. It consists of the following
steps. First the Fourier modulus (the square root of the measured
intensity) is multiplied (weighted) by an apodizing function that goes
to zero over an area only somewhat larger than the area of the small
aperture. Then several i{terations are performed. The idea is that
with the weighting function 1in place, the known phaie will not be
overwhelmed by the unknown phase, which now exists over a much smaller
area than before, and furthermore has an associated magnitude that is
weighted down in the area of the unknown phase, further reducing its
influence. Thus the known phase has a chance to be useful as a
constraint that helps to retrieve the unknown phase over the larger
area, Next the weighting function 1s replaced by a weighting function
that is nonzero over a wider area. ‘Then more iterations are performed,
retrieving the unknown phase over this wider area. This proceSs of
widening the weighting function and performing mo?? itprations is
repeated until the weighting function 1is nonzero over the entire large
aperture, at which point the entire phase' is retrieved and a fine-
resolution image is reconstructed. - |
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Several trials of the expanding weighted modulus algorithm were
made, and, while the results showed promise, the images that were
produced were far from diffraction limited. For these experiments, the
weighting functions were chosen to be either rectangle functions or
triangle functions, and the number of intermediate weighting functions
used was small. (These initiul results were greatly improved upon in a
separate effort, in which it was found that by using weighting
functions with continuous derivatives and using a very much larger
number of intermediate weighting functions, the reconstructions could
be reliable and of high quality [6.2]).

6.2 RECONSTRUCTION WITH ONE BIT OF PHASE

Ore bit of phase {information, which is equivalent to knowing the
sign of the real part of the Fourier tiransform, 1is well known to
contain considerable information. First of all, if the image is
"causal,” {.e., it is Tlocated completely to one side of the optical
axis, then the inverse Fourier transform of the Fourier modulus
combined with the one bit of phase yields an image plane with ths
following components: the desired image, the twin (complex conjugated
and reflected about the origin) of the desired image, and noise and
artifacts. The strength of the noise and artifacts depends on the
degree of oversampling of the Fourier modulus data. With a high degree
of oversampling the noise and artifact 1level can be very low, yielding
a good-quality image immediately. This 1is illustrated in Figure 6-1,
which shows the object (a) and the image reconstructed by inverse
transforming the Fourier magnitude plus one bit .of phase (c). For
comparison, Figure 6-1(b) shows the inverse transform of a constant
modulus with the one bit of phase, The quality of this Tatter image
shuws that the one bit of phase without any modulus information is very
useful indeed. Figure 6-1(d) shows the result of using a windowed
version of Figure 6-1(c) as an 1initial estimate, then performing
several ijterations of the iterative transform algorithm using a support
constraint in order to refine the phase. The iterative transform
algorithm successfully removed most of the noise and artifacts.
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FIGURE 6-1. RECONSTRUCTION WITH ONE BIT OF PHASE. (a) Object, (b)
image from a constant modulus combined with one bit of phase, (c) image
from the correct modulus combined with one bit of phase, (d) image

reconstructed by the iterative Fourier transform algorithm using (c) as
an initial estimate.




From Figure 6-1 we see that one bit of phase information is very
powerful information, and that what noise and artifacts it introduces
can be easily cleaned up by the iterative Fourier transform algorithm.
Unfortunately, none of the sensors presently under development yield an
accurate measure of one bit of phase, so the results shown in Figure
6-1 are presently of academic interest only.

6.3 PHASE VARIANSE ALGORITHM

In what follows 1s described a modification of the iterative
transform algorithm which uses a poorly-known phase across the Fourier=-
domain aperture,

Let the object and its Fourier transform be f(x) and F(u) = IF(u)l
exp[i¥(u)], respectively. Suppose we measure

Go(u) " |G°(u)l exp[i6(u)]

= F(u) exp[ig,(u)] = IF(u)) exp{i[¥(u) + ¢,(u)]}  (6-1)

where ¢e(u) 1s a phase error with known (or known approximately)
variance ¢. So the measured (noisy) phase is

0() = [900) + 5 (W)]pog 25 - (6-2)

The image gotten by inverse Fourier transforming G (u) would be g (x),
a blurred image.

We seek ways to improve the phase estimate over that given by the
measurement §(u). This may be accomplished by the {terative Fourier
transform phase retrieval algorithm which uses additional information
in the object domain, such as nonnegativity and/or support constraints
to infer the true phase of F(u). Two approaches are described next.’




The first approach 1s tb ‘perform the usual phase retrieva]
algorithm, typically cycles "of hybrid input-output (HID) ‘and error-
reduction (ER), and simply use @(u) as “the initial estimate for "the
Fourier-domain phase. The Fourier-domain constraint would be ‘the
measured modulus IGo(u)I = |F(u)t,

The second approach is to constrain the phase durﬂng the iterations
to 1ie near 8(u). Constraining the phase to equal 6(u) does no good
since one would simply get the blurred image with no change. Instead
it is more.useful to allow the phase to wander from o(u) but not let
it wander too far. This can- be actomplished using the phase ‘variance
algorithm, which is described as follows. In the Fourier domain, as
well as constraining the modulus to eduaI IF(u)}, constrain the phase
to not differ from 8(u) by more than cs, where ¢, thé-vaFiahqe factor,
is a real constant on the order of unity. In order to account for 2r
ambiguities, this should be performed as follows, where ¢ is the phase
of the Fourier transform of the input object to the fterative loop and
¢' is the altered phase:

8 -co , (f=8)poq op < =C0

' = ¢ , =co$ (¢ - o)mod é' < co | f;(b-B)

6 +co , (¢- o)mod og > CO
= VCLIP[(¢ - 6) mod 2x, -co, co] + 6 (6-4)
where
o b , ax<b _ 7
VCLIP(a, b, c) E{a , bSagec ' © (6-5)

c , a>c¢

R L
1 . [}

. _‘ , - ;."\\ '
is a.Numerix array processer math™ 1ibrary funttion. (A convenient way
to perform the modulo 2r function' is'by'the successive operations RECO
and POLAR, which.converts the modulu§/phase tb rbal/imaginary and then

back to modulus/phase.) This Fourier domain opefatfon 1is 1lustrated
in Figure 6-2.




v+¢, = Degraded phase

¢ = Computed phase
d = co = Phase limit

¢ = Phase error standard deviation

FIGURE 6-2. PHASE VARIANCE ALGORITHM.  The phase ¢' (u) ts constrained

to 11e within co of the given phase, 8(u).
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Several variations of the phase variance algorithm were attempted

for both the cases of a real, nonnegative object and a complex-valued
object. -In the object domain we can use either the hybrid-output (HIO)

or error-reduction (ER) algorithm while one employs the phase variance

algorithm in the Fouriei domain, We refer to these two combinations as

PVHIO-ant PVER," respectively. “Although HIO usually outperforms ERy we\'

found that PVER usual]y outperforms PVHIO.

Several values of the variance factor ¢ were tested. The value of

¢ should be small enough to re1nforce the given phase va1ues but large

enough to allow the -phase the' freedom to adjust to become more
consistent with the more accurate Fourier modulus data, Generally c in
the range of 0.6 to 1.0 worked the best. -Increasing or decreasing the

value of c as the {terations progressed ‘did not seem to improve
convergence.

Two different initial estimates were tested. One was the image

go(x) obtained using the noisy phase estimate.. This is equivalent itp-

starting in the Fourier domain with phase ¢' =0, the noisy phase. The
second was an image consisting of .the support constraint filled with
uniformly distributed random numbers. - Most often the noisy-phase
initial estimate performed better than the random initial estimate.

It was found that the phase variance algorithm would improve the
estimate for several iterations, and then 1{t would stagnate. The
reason for the stagnation appears to be that the outlying noisy phase
values for which the phase error Ig,1 > co are inconsistent with the

phase variance constraint [Eq. (6-3)]. ~We found it best to siog_"'

enforcing the phase variance constraint at this point and thereafter to
only enforce the Fourier modulus constraint (along with the image-
domain support constraint). That 1s, after the phase variance
algorithm stagnates, continue with the traditional iterative transform
algorithm, using cycles of HIO and ER.
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After testing numevous combinations of algorithm types and
algorithm parameters, we arrived at the following combination that
seemed to work the best on average. Perform twenty iterations of PVER
with ¢ = 0.8, then ten iterations of ER, and finally several cycles,
each cycle consisting of 20 HIO (beta = 0.7) and 10 ER, until
stagnation {no further progress) occurs. After every other cycle,
enlarge the support'constrqint by adding to it each nearest-neighbor
pixel that was previously outside the support, In order to reduce
sidelobes in the image, to make the support constraint more effective
when diffraction effects are included, the Fourier modulus should be
weighted with an apodizing function. For the experiments described in
what follows, we used a weighting function proportional to the
autocorrelation of a circle [giving an 1impulse response of the form
(Jl(r)/r)2 to the complex image].

The progress of the iterative transform algorithm is monitored by
computing the object domain error metric,

EE: 19" (x)|
e 6-6
2. 1(x)1 (6-6)

X

ODEM =

where 7 is the set of points at which g'(x) violates the object-domain
constraints. It is a measure of how close the output image, g'(x), is
to. satisfying the object-domain constraints. For these digital
simulation experiments, in which we also know the actual object, we can
also compute the absolute error,

2. lg'(x - x) - f(x)l2~
: ABSERR = |-& (6-7)

> 12

X




where xo 1s the shift. of the output image g' (x) that maximizes its
.correlation with the true -object f(x). For images that are
recognizable .and have some utility, ABSERR is typicaily below 0.5. For

images that are good representations of the object ABSERR is typicql1y
about 0.3 or less,

Figure 6-3 show ABSERR as a -function of iteration number for the
case.of using the original' iterative transform a1gor1thm with a random
initial estimate, for the case of a real-valued, nonnegative object
when there is no Fourier phase ‘information. Each curve represents a
different trial of the algorithm with a different random start. Fbr
the majority of the cases the HIO algorithm converges to a good 1mage,
whereas the ER algorithm . rarely does for real, nonnegative,objegts.
When the algorithm was started with -a nbisy phase ‘éstimate, without
reinforcing it during the i{terations, it did not improve the
performance significantly. SR '

Phase errors used for these experiments were generated using
McGlammery's method [6.3]. These phase errors are similar to those
that would result from atmospheric turbulence. The adjustahle
parameters of the phase errors are the standard deviation, o, and the
correlation length, corl.

Figure 6~4 shows the convergence (in terms of ABSEhR) of the phase
variance algorithm for several values of the variance factor, c. From
this we see that the optimum value of ¢ for this case is about 0 8 to
1.0. Figure 6-5 shows the same thing in terms of ODEM. A]though the
values of ODEM are typically much 1less than the values of ABSERR, they
correlate fairly well with the values of'ABSERR.

Figure 6-6 show blurred 1images and images, reconstructed by the
phase variance algorithm for three 'djfferent phase errors for the case
of a real, nonnegative object. 1In all three cases, with no noise on
the Fourier modulus, the quality of the reconstructed images was the
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Reconstruction Using the Original Iterative Algorithm
Random Inputs

. Algorithm
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FIGURE 6-3. CONVERGENCE OF THE STANDARD ALGORITHMS.




Reconstructlon Usmg Phase Varlance Algorlthm
5 = 2m/4, corl=6
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FIGURE 6-4, CONVERGENCE (ABSERR) OF = THE PHASE VARIANCE ALGORITHM FOR
VARIOUS C.
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Reconstruction Using Phase Variance Algorithm
o = 2n/4, corl=6
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FIGURE 6-5. CONVERGENCE (ODEM) OF THE PHASE VARIANCE ALGORITHM FOR
VARIOUS C.
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FIGURE 6-6. RECONSTRUCTION OF REAL, NONNEGATIVE IMAGES BY THE PHASE
VARIANCE ALGORITHM, (a) Object; (b) support constrain; (c)-(d) blurred
images, with (c) phase errors ¢ = x/2 radians and corl = 6 pixels, with
sd; ¢ = x/2 and corl = 30, and with (e) ¢ = x/5 and corl = 6; and (f) -
h) corresponding images reconstructed by the phase variance algorithm.
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same in all three cases, although the convergence was faster for the
cases with the smaller given phase error, - '

The reconstruction of complex-valued objects is much more difficult
since one no longer has the powerful nonnegativity constraint. For the
complex-valued, speckled versions of the object shown in Figure 6-6,
the conventional iterative transform algorithm, when starting with a
random initial estimate, failed to reconstruct a recognizable image.
When the noisy phase was used to start the algorithm, however, the
conventional iterative transform algorithm improved the image quality

substantially, although the reconstructed 1image remained imperfect.

The phase variance algorithm similarly reconstructed a substantially
improved, but imperfect image. The results from the phase variance
algorithm were slightly better than those of the conventional algorithm
for these cases. This is {1lustrated by Figures 6-7 to 6-9.

Figure 6-10 shows the convergence for the case of Fourier modulus
data corrupted by photon noise. Tho_iferations improved the RMS error
of the image for the cases of more than 120 photons per aperture-plane
speckle (or 105 total photons). However, for lower light levels, the
algorithm can make the image worse. This happens when the Fourier
magnitude data are noisier than the phase data; then adjusting the
phase to be more consistent with the noisy modulus data is
counterproductive. In such a case it would actually make sense to
adjust the modulus to be more consistent with the phase data. Figure
6-11 shows the RMS error of the reconstructed image as a function of
the total number of photons. Figure 6-12 shows three of the
reconstructed images. 3 x 105 total photons (120 photons per speckle)
were required to ocbtain improved imagery.

In summary, we have developed a new variation, the phase variance
algorithm, of the iterative transform algorithm which reconstructs a
fine resolution image when degraded Fourier phase data is available.
For real, nonnegative objects 1t converges faster and more reliably
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Reconstruction using lterative Phase Retrieval Algorithm
No Phase Information vs. Noisy Phase Input
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VALUED OBJECT, :
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Reconstruction using Phase Variance Algorithm
No Phase Information (Reg. recon.) vs.
Noisy Phase Input, Phase Variance Algorithm
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Reconstruction Using Phase Variance ‘Algorithm
| o= 2n/10, corl=6
Poisson noise added to Fourier magnitude
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Reconstruction using: Phase Variance Algorithm
Poisson noise added to Fourier intensity
o = 2n/10, corl= 6
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than the conventional {terative transform algorithm. For complex-
valued objects, which are difficult to reconstruct, it reconstructs
images of quality substantially better than that of the blurred images
given by the available noisy phase data.

Other variations of the phase variance algorithm are possible which
may yield improved performance. Rather than using a formula for the
new phase estimate such as Eq. (6-3) which abruptly changes at a
threshold value, it may be better to have a formula that changes

continuously and smoothly with the data. An example of such a formula
would be '

$' =8 +coinll + ¢ - 61/(co)] sign(g - 6) | (6;8)

which is approximately equal to ¢ for I¢ - 61 << co and departs slowly
from the neighborhood of § when I¢ - 81 > co.

Another 1nteresting possibility 1s to use the same type of
operation on the modulus of the Fourier transform. That is, rather
than substituting the measured Fourier modulus for the computed Fourier
modulus, allow the Fourier modulus wander from the measured value
according to the amount of noise present in the Fourier modulus data.
Such an algorithm would reconstruct the phase from the modulus or the
modulus from the phase depending on which has the higher signal-to-
noise ratio at any given point in the Fourier domain.
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7.0 2-D SHEAR AVERAGING

Shear averaging is an algorithm invented at ERIM [7.1] originally
for correcting one-dimensional (1-D) phase errors, as occur fin
synthetic aperture radar (SAR). Here -we generalize it and apply it to
the case of 2-D phase errors as would be encountered in imaging
satellites as described in Section 6. In what follows it is seen that
a 2-D extension to shear averaging is feasible if the phase errors are
slowly varying.

7.1 2-D SHEAR AVERAGING THEORY
7.1.1 The 2-D Shear Averaging Algorithm
As in previous work [7.1], let the ideal fourier transform be
Fu, v) = IF(u, v)I ;xp[ii(u, v)] (7:1)

and the actual, measured Fourier transform, with phase errors pa(u, v)
be

G(u, v) = F(u, v) exp[igy(u, v)] (7-2)

where u = 0, 1, ..., No ~-land v =0,1, ..., M° - 1, For these 2-D
phase errors we form the shear average

*
Soa(u, v) = u',v:§£ N G(u', v') G (u', v' =~ a) (7-3)

where Buv is a set of points (u', v') (the region of summation)
centered at (u, v), and a is a lag smaller than the speckle size
(correlation length) of F. More generally a weighted summation can be
performed. Henceforth the symbol B under the summation means (u', v')
€ Buv‘




In the earlier work [7.1] 1t was assumed that the phase error is

one-dimensional (1-D), i.e., ¢o(u,v) = ¢,(v).  Then one can sum over
one entire line, i.e., B, ~consists of (ut,v), u' =1,2, ..., No
where N, is the number of samples in the u-dimension. Then Soa(“'v) =
Sa(v) is a function of v only and {ts phase can be summed to estimate
¢e(v) [7.1]. The next most complicated case is for the phase error to
be 2-D but separable, i.e., ¢ (u,v) = ¢, (u) + ﬁev(v). If one performs
the summation of Eq. (7-1) again over one entire 1ine, one again gets
the same resuit as for the 1-D case: Soa(“'v) - Sa(v) is a function of
v only and its phase can be summed to estimate g, (v). Similarly the
phase of Sbo(") [see Eq. (7-8)] can be summed to estimate Qeu(u).
Consequently the separable case can easily by handled as two 1-D
problem with errors in each dimension the same as for the 1-D case
[7.1]. 1In what follows we consider the fully 2-D case.

If the fully 2-D phase error Qe(u,v) is smoothly varying, then we
can consider a region of summation-Buv having an area over which fo CaN

be approximated by a Taylor-series expansion 1including only linear
terms: : | ' '

Polu's v') = go(u, v) +cpplu, v) (u' = u) +cp(u, v) (v' - v) . (7-4)

(Later we will consider the effect of higher-order terms.) Inserting
Egs. (7-2) and (7-4) into Eq. (7-3) and simplifying yields

Soa(u, v) = exp[ia c01(u. v)] }E: F(u', v') F*(u', v -2) . (7-5)

As in the 1-D case [7.1], provided that the area of summation {s large
enough, we can approximate the summaiion by the ensemble average

J(0, ;) =1 u(0, a) ~<F(u', v') F*(u', v - a) " (7-6)
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where J(Au, Av), the mutual intensity, 1is the Fourier transform of the
underlying incoherent image. Then we have

Soalus V) = exp[ia ¢y, (u, V)] T u(o, @) . (7-7)
Similarly '

Spolun V) = 32 6(u'y ') G(u' - b, v)
~ exp[ib clo(u, v)1 T alb, 0) . (7-8)

Then the phases of Soa and Spo are

6oqlu V) = 8 corlus V) + arg(p(0, a)] + 2x py,(u, v)  (7-9)
and Y o
obo(u, v) = b °1o("' v) + arg[u(b, 0)] + 2« pbo("' v) | (7-10)

respectively, wheré"poa and Ppo are integers that ailow for the fact
that the phase is computed modulo 2r. If the values of a and b are
chosen to be small compared with the correlation distances of both u
and ¢, then all the terms in Eqs. (7-9) and (7-10) will be small and

Poa * Ppo " 0. In the analysis that follows we will not make this
assumption.

Since BoqlUs V) and abo(u. v) represent phase derivatives, by
integration over ooa(u, v) and abo(u, v) one can arrive at an estimate
of ¢e(u, v). This could be done, for example, by first integrating in
the v direction for a fixed u, then integrating in the u direction for
each value of v, The geometry and spacings of the regions of summation
B, can take several forms. In what immediately follows we give a
simple generic form that Tlacks detailed accuracy but explains the
principal. For example, suppose B, is a rectangular area centered at
(u, v) of length Mg in the v direction and ng in the u direction. Then
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we could compute ;e on a grid with spacings mg and ng by first summing
in the v direction along u = 0:

6, (0, 0) 20 (7-11a)
u | ]
85,(0, mmg) = %;;l(ma/a) 65a(0, m'mg)
v My %g:lcOI(o, m'mg) + m(mg/a) arg(s(0, a)]
m

+ (mg/a) 2¢ :%;_lpoa(o' m'mga) . (7-11b)

Next, for each v = mmg we sum'over ut
;e(nna, mmB) - a;a(o, mmB) + ("B/b) 5?;1 obo(n'na. mmB) . (7-12a)

n n
~ My %Z;l Cpp (0, m'mg) + ng 5521 clo(n'na. mmB)

+ m(mg/a) arg[u(0, a)] + n(ng/a) arglu(b, 0)]
] .
+ (mgfa) 2¢ 5;1 Pal0: m'mg)
n, |
+ ("B/b) or EEEI pbo(n'nB, me) . (7-12b)

As long as (mé/a) and (nB/b) are integers, then the last two. summations
add integer 2r phase which {s unimportant and can be ignored. The
m(mg/a) arg[u(0, a)] + n(ng/a) 'arg[p(b. .0)] are linear phase terms
which shift the image but do not cause blurring, and so they can be
ignored, The first two terms mBBCOI(O, m'mg) + natclo(n'ne, mma) are

138




sums over the derivative of the phase error which should give a good
approximation to ’e as long as Eq. (7-4) is accurate over each Buy-

Two sources of error cause inaccuracies in ;e’ (1) statistical
errors in approximating the finite sum in Eqs. (7-7) and (7-8) by Iu
and (2) phase errors ’e that -have higher-order terms within the region
of summation,

7.1.2 Residual Phase Error Due to Statistical Error

The residual phase error due to the approximation of the summation
over the product of the F's by the ensemble average, which is the error
of ‘arg[u(0, a)] and arg[u(b, 0)], is similar to that in the 1-D case
[7.1] and has standard deviation given by '

oy 1 (7-13a)
[2Ng" 1u(0, a)l

and

(7-13b)

I?NE' iu(b, 0)1

where in this case Ng is the number of independent sémp]es of F in the
region B. For region B of ng by mg samples, Np = (nB/nC) (mB/mC),
where ne by m, is the size of an independent sample of F{u,v). The
estimate of the phase error across the width my would be (mg/a) 6,,..
Hence the variance of the phase error estimate across the width Mg is

(mB/a)2 a§ = (m%/az) ncmc/[(ZanB)lp(o,a)lzl

= mBnCmé/[ZaanIp(O,a)IZJ . | (7-14)




If the total array size is N° = Nng by My = Mmg, then the variance of
the phase error at the far edge of the array, assuming the simple
- summation of Eq. (7-11), would ke

M a' M
da . kﬁﬂ Mah . i oNeMe (7-15)

B) 2a°ng 1p(0,8)1°  2a%n 14(0,a)!

where it 1s assumed that the M = (Mo/mB) errors are uncorrelated over
the sum.

A similar result, exchanging m's and n's, holds for summation in
the orthogonal dimension, and so the variance of the error in the
corner farthest from the beginning corner is

2 M.n_m N.n_m

. o o"cc . 7-16
WM ey (0.1 267 mg 14(b,0)12 =19

for the simple summation approach.

Consider the case of Ng = M, =2 samples and a = 1, Then, from Eq.
(7-15) we see that uniess ng s comparable to M, oM will be
unacceptably large (much greater than one radian).

However, there are multiple paths to sum from 33(0. 0) to ;é(NnB,
MmB). Methods used to reconstruct 2-D phase functions from phase
differences (least-squares solutions, for example) can be used here;
then the variance of the residual phase error should be much less than
that given by Eq. (7-16).  Since 2-D least-squares methods reportedly
yield a phase-error estimate that has an error comparable to the error
in a single phase-error difference estimate, the variance of the 2-D
phase error estimate should be similar to that of Eq. (7-14).




Note from Eq. (7-15) that the statistical error of the simple 1-D
summation is independent of Mg Therefore, as far as that error is
concerned, the width of B, can be anything one desires. Since using a
narrow Buv will reduce the effects of nonlinearities in ’e (which are
analyzed later), it seems that to compute Soa(u,v) one would want to
use B, of width one sample in the v dimension by ng samples in the u
dimension, where ng is the greatest 1length that does not run into
severe nonlinearity problems. On the other hand, to compute Sbo(u,v)
one would want By to be of width mg samples in the v dimension (the
largest mg that avoids severe nonlinearity problems) by one sample in
the u dimension. Thus we are lead to using very different sets of
points Buv for the summation of soa and Sbo' and different sampling
grids would result as well,

In order to arrive at a rectangular grid from which we could
proceed with a least squares solution, we could first sum across blocks
of width mg of the 05a and down blocks of width g of By to get
samples on a grid with spacings ng by Mg « The variance of the phase
error across a block of width mg is given by Eq. (7-14). Take thg
difference between the phase values at the beginning and end of each
block to estimate the phase difference hetween those two points. These
would have the same variances as mentioned above. Then we could
proceed with the least squares solution,

However, from Eq. (7-14) we see that when summing over just a
single block of width Mg the variance of the error is proportional to
Mg Therefore it would be best, when using a least-squares summation,
tn sum over narrow blocks to reduce the statistical error as well as
the nonlinearity error. This would suggest summing over blocks of
width my for 00a and of width n, for Opo If the normal assumptions
about the least-squares phase reconstruction were true, then the 2-D
phase estimate variances would be




(m./a)? o2 = nm/[2an tu(0,2)12] (7-17a)

for the v dimension for which Ng = (nB/nc) x 1, and

(n./b)o? = ném.s[2b2mg 1u(b,0)1] (7-17b)

for the u dimension, for which Ny = 1 x (mB/mc). However, this ignores
the fact that the error of ooa("'v) is correlated over ng samples in
the u dimension and obo(u,v) is correlated over Mg samples in the v
dimension. Consequently, the variance of the 2-D phase error estimate
may be closer to ncmc/[Zazlp(O,a)lzl. A further refinement of this
analysis will be necessary to arrive at a more precise statement of the
residual phase error for the 2-D case.

7.1.3 Convolutional Processing

An aTternatiye processing scheme is suggeited-by Eq. (7-3), which
is essentially a convolution of G(u', v') G (u', v' - a; with Boo
Letting the functional representation of Buv be

i outy o {1 for (u', v') e B(u, v)
Buy(u’s v*) {0 for (u', v') & B(u, v)
=B (u' = u, v =) (7-18)

Eq. (7-3) can be written

- ¥ . 1 w
Soa(u, v) = Eijv' Boo(u -, v' =v)G(u', v') G (u*, v' -a)

= [6(u,v) 6 (u, v - a)] @ B, (u,v) (7-19)




where @ denotes cross-correlation. More generally, Boo(u',v') could be
a nonbinary function. A cross-correlation can be computed by two
FFT's, a product, and an inverse FFT, For By covering just a small
area, direct cross-correlaticn is more efficient than the FFT method.
By this approach, then, one arrives at Soa(u' v) for each sample of (u,
v) [and similarly Sbo(u, v)], not just for the coarse grid (nnB. mmB).
Integrating or performing a least-squares fit over this fine sampling

of the phase derivative is an alternative to the use of the coarser
grid.

7.1.4 Residual Phase Error Due to Higher-Order Phase Errors

The residual phase errors given by Eq. (7-14) consider only the
result of averaging over a finite number of pixels to estimate the
ensemble average. A second source of error is the fact that the phase
errors are not constant over the area of integration. In what follows
is analysis of that component of the residual phase error.

Now consider phase errors of the more general form

golu', v') = j;;;o Cjk(“' v) (u' - u)j (v' - v)k (7-20)
where
Cooltr ¥) = gglu, v) (7-21)

for the region B(u, v). Inserting Eq. (7-20) into Eq. (7-3) yields

Soalus V) o= 30 Gut, v) G (u, v' - a)
B .




-%:Nw,w)fwuv'-n
expi[§ eyl V) (' - wd (v - 0k
-E%%umV)W‘-wJW'-V~Mﬂ
. ;%: F(u', v') F(u', v' - a) éxpi{fgi °Jk("( v (- u)d
(v =K e (vt - - a)"l]
- 3R vf) F'u', v' - a) expi{}%ﬁ U §) (' - u)d

o [k(v' - v)k'1 a- (;] (v' = v)k’z_a2 + .ee

E a“J] (7-22)
where . o
() - srdbam - (7-23)

That is, the phase error term cjk(“' v) (u - u)J (v' - v)k results in
phase terms in soa("' v) that are jth order in u' and (k - 1)th, (k -
2)th, ... order in v'. In particular all terms in ¢, that are zero-

order (constant) in v (k = 0) disappear, and are therefore
inconsequential,

Specifically, consider the phase error terms through cubic:

QNHVW-iJmV)+qu-u)+%ﬂW-v)+%dw~Uﬂ

+qﬂw-u)U'-ﬂ+cMW‘?w2




+ cao(u' - u)3 + c21(u' - u)z(v' - v)
+ clz(u‘ -u) (v' - v)2 + co3(v‘ - v)3 (7-24)

where Cik = cjk(”' v). Then
Soalus V) = };: F(u's v') Fr(u'y v' = a)

exp i{co1 a+ cll(u‘ -u) a+ Co2 [2a(v' - v) - az]-
+ c21(u‘ - u)2 a+ clz(u' - u)‘[Za(v' -V) - a2]
*+ Co3 [3a(v' = v)2 - 3a2(v' - V) +_a3]}

}%: Flu', v') F*(u', v' - a)

exp 1{e;; alu' - u) + 2 ¢y a(v' - W)
* ey alu -0
+eput - u) [2a(v' - v) - &)
+ coy[3a(v' - V)2 - 3a8(v' - V)]} . (7-25)

Now make one further assumption. Suppose that when the summation

is replaced by an ensemble average over the realizations of F, we can

treat the phase error terms as being statistically independent of the F
so we can replace Eq. (7-25) by




Sealth V) = T 4(0, a) exp 'l(c01 a - Cyy 2% + Co3 as)
};: exp 1{c11 a(u' - u) +2 Co2 a(v; - V)

+ €y a(u' - 9)2 + °12(“' - u) [2a(v' - v) - a2]

+ co3[3a(v' - viz - 3a2(v' -'v)]} . | (7-26)

Now further suppose that Boo(u‘. v') is symmetric in u' and in v'
and separable in u' and v'. ° Then, individually, terms in Eq, (7-26)
that are odd in (u' - w) or (v' = v) will have integrals (sums) of
their imaginary part that will be zero (making the integral have zero
phase) and no undes{red phase terms will result. Consequently, of the
phase error terms explicitly shown in Eq. (7-24), the single terms that
cause undesired phase errors in the symmation of Eq. (7-26) are those

having coefficients Cay and Co3* If we assume small phase error
.contributions due to these terms, we can approximate

% exp 1[c21 a(u' - u)2 + cp3 Ja(v' - V)z]

~ };: [1 + icy, au' - u)2 + gy 3a(v' - v)2] -

ng/2 mg/2
2 ngng + 1my ¢,y 2 I u'? du 4+ ing co3_3a I v'Z gy .
'nB/Z "“‘B/Z

- 3 |
ngMg + 1mB Ca) an8/12 + i"B 803 3a msllz

= anB[l + ic21lan§/12 + 1c03 am§/4] '

= nghg expi[cZI an%/lz * Cp3 am§/4] ' o (7-27)




Therefore for ¢, with terms up to cubic over B, the phase of S, (u, v)
is given approximately by - ' |

+ cpy AN2/12 + 2x p (U, V) (7-28)

(where the ¢4y are functions of u and v).

If we ignore the fact that there are higher-order phase errors and
take this phase to be due to the linear component only, then the phase
difference across B will be taken to be

(mg/a) 6,,(u, v) = (mB/a) arg[u(0, a)] + Cp; Mg = Co2 Mg 2
*¢o3 ms(az + m§/4) * Cop Mg n%/lz

+ (mg/a) 2w p,,(u, v) . (7-29)

At ‘this point consider wﬁat the actual phase differéncejacross the

center of B is in the v direction. For u' = u, we have, from Eq.
(7-24),

¢e(0, vV & mB/Z) = ’e("' v) + c01(= mB/Z) +-coz(t m'Blz)2 + COB(* mB/2)3.

- (7-30)
Therefore .

HalUy v +mg/2) ~ $(u, v - mg/2) " 01 M + Co3 mgla . (7-31)

The residual error, the difference between Eqs. (29) and (31), ignoring
(mg/a) arg[4(0, a)] and the 2rp terms, is




res. error = - C,, Mg a + 603 mB(a2 + mgla) + Cyy Mg n§/12 . (7-32)

0f these terms, ~CpoMgd will probably be the worst since its
coefficient will ordinarily be the largest.

The last source of error that we will consider here are the odd-
function errors in Eq. (7-26) that were dropped because they added
nothing to the phase-error estimate, Thgir'dQIeterious effect is to
reduce the magnitude of the summation over B, thereby reducing the

signal-to-noise ratio. For example, the first term taken by itself
would yield ‘

}E: exp [1c11a(u -u)] = Mg I exp(icllau') du'.
-nB/2

= ¥ Mgng sinc[cllanB/(Zr)] (7-33)

which would go to zero for cyyang ® 2r, Therefore, the contribution of
such terms to fo over B must be considerably less than 2x in order to
avoid a significant loss in signal-to-noise ratio.

To minimize the residual phase errors in Eq. (7-32) due to higher-
order phase errors, we would want to choose small values for mB and ng
whereas to minimize the residual phase errors due to the statistics
[see Eq. (7-16)] we would want to maximize mg and ng. The opt imum
trade-off, which depends on the spatial statistics of ¢ , should be
determined. Another possibility is to perform the phase error
correction recursively. Depending upon how ’e is corrected in-between
the coarse sampling grid (i.e. what form of interpolation is used),
some of the higher-order terms may be reduced. Then a second. pass of
the algorithm may improve the result.
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It is also possible to reduce these errors substantially with more
complex processing. If we use the convolutional method for computing
'Soa("' v) at the finer sampling grid, then with closely-spaced samples
of Soa(u. v) we can estimate the quadratic coefficient coz.and
compensate for it appropriately. Extensions to this approach could be
used to reduce other higher-order terms as well, including cross-terms
such as Coy The area of optimally using the data Sba("' v) to
estimate ;e(u v) 1is probably a very rich area in which great
improvements could he made. One should investigate least-squares and
bispectrum-1ike approaches, for example.

In the derivations given here we estimated edge-to-edge phase
errors across.the regions B, but then -corrected them on a center-to-
center basis. Therefore the correction equations need to be modified
to account for this effect.

o
)

7.2 COMPUTER SIMULATION AND RECONSTRUCTION EXPERIMENTS

Based on the theory presented in Section 7.1, three types of
spatial-frequency summations were implemented, as illustrated in Figure
7"10

Given Se (u v) and Sho(” v), estimates of phase error differences
from the 1ntegrat1ons the method we used for reconstructing the phase
error was the complex exponential phase reconstruction a]gorithm shown
in Figure 7-2, which is taken from Reference 7.2. In that figure Pmn
is equivalent to exp[i?e(m,n)], Dumn is equivalent to Sbo(u,v), and
D,mn is equivalent to Soa(u,v). First a simple product (phase
summation) is performed along each of the two axes, then the interior
points are built up recursively using a summation over two paths. Next
several iterations are performed. . In one iteration, each value is
replaced by a summation of values taken from the four nearest
neighbors. The order of the selection of the values is in an outward
spiral: first a clockwise spiral, then a counterclockwise spiral. In




2-D SHEAR AVERAGING

INTEGRATION GEOMETRIES

M M
Case 1 * Mg
mB e
' Integrate over 1 x mg.
Using each pixel, . 1M .
Reconstruct M x M array. G(u,v) G (u,v-a)| G{u,v) G (u=b,v)
A . y .
For Soa(u.v) - For Sbo(u.v)
] My
QEEE_; o |m S IENEN
Integrate over mg X M.
Using each pixel,
. % ]
Reconstruct M x M array, G(u,v) G (u,v-a) 6{(u,v) G (u-b,v)

Case 3

Integrate over my x my (112 Case 2).

Using each mg X thh pixel, :
Reconstruct (M/ma) X (M/ma) array from (mB/a) Soa'and (mB/a) qu.
Interpolate to M x M array

FIGURE 7-1. INTEGRATION GEOMETRIES FOR 2-D SHEAR AVERAGING.




COMPLEX EXPONENTIAL PHASE

RECONSTRUCTION -
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+ Du 23'P24 + Dy 23 P33)/|P23|
etc.

FIGURE 7-2. COMPLEX EXPONENTIAL PHASE RECONSTRUCTOR.
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Figure 7-2, the division by IPmnl on the right-hand side is to be
interpreted as: first compute the right<hand side without IPmnl, then
divide it by i1ts magnitude to arrive at a pure-phase function (a phase
exponential).

Figure 7-3 shows a case for which the object is a delta function
and the phase error is that shown in Figure 7-3(a), with ¢ = #/2 and
cor1=30. For display of phases, <r is black, x is white, and the phase
is wrapped (modulo 2¢). The impulse response for this phase error is
shown in Figure 7-3(g). The phases and magnitudes of Soa and Spo for
Case 1 integration (see Figure 7-1) with mg =8 are shown in Figures
7-3(b)-(e). The phase-error estimate, reconstructed by shear averaging
in conjunction with the reconstructor shown in Figure 7-2, 1s shown in
Figure 7-3(f). From this it can be seen that the reconstructed phase
error is similar to a smoothed version of the true phase error. The
smoothing is due to the value of Mg Figure 7-3(h) shows the impulse
response due to the residual phase error gotten by subtracting the
estimated phase error from the true phiase error. From this it is seen
that subtracting the phase error estimate removes most of the error,

Figure 7-4(a) shows the complex-valued object used for the
experiments that follow. Figures 7-4(b), (c) show the magnitude and
phase of the Fourier transform of the object. Figure 7-4(d) shows the
added phase error (¢ = /2 and corl = 30), Figure 7-4(e) shows the

given noisy phase [(c) plus (d), modulo 2x], and Figure 7-4(f) shows
the blurred image obtained using the noisy phase.

Figure 7-5 shows a reconstruction experiment similar to that shown
in Figure 7-2, with a case-1 integration (see Figure 7-1) with my = 8.
Comparison of the original object in (a) with the blurred image in (c)
and the reconstructed 1image in (h) shaws that 2-D shear averaging
corrected some of the phase error, but left a large residual phase
error. Figure 7-6 shows the same thing for mé = 32, and Figure 7-7
shows the same thing for a case-2 integration (see Figure 7~1) for mg =
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FIGURE 7-3. PHASE ERROR RECONSTRUCTION BY 2-D SHEAR AVERAGING FOR A
POINT-SOURCE OBJECT. (a) Phase error function (modu]o 2x): (b), (e)
phase of Sh i (d), (e) magnitude of Sy (f) reconstructed
phase; (f? ?mpu?ge response from (a); (h) ?mpu?ge response from (a)
minus .




FIGURE 7-4, DATA USED IN 2-D SHEAR AVERAGING RECONSTRUCTION
EXPERIMENTS. (a) Object; (b), (c) object's Fourier magnitude and
phase; (d) phase error; (e) noisy phase estimate [(c) plus ?d), modulo
2¢]; (f) image blurred by the phase error.

154






FIGURE 7-6. PHASE ERROR CORRECTION BY 2-D SHEAR AVERAGING. Same as
Figure 7-5, except mg = 32 was used.




FIGURE 7-7. PHASE ERROR CORRECTION BY 2-D SHEAR AVERAGING. Same as
Figure 7-5, except case-2 integration and mg = 32 was used.
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16. Of these, the case-1 integration with mg = 32 appears to yield the
best image for this example. Larger values of mg cause the integration
to be over an area over which the phase error varies too wildly,
whereas smaller vaiues of my cause the integration to be over a smaller
region, increasing the statistical error, Comparing Figure 7- 5(c)
with 7-5(h) shows that 2-D shear averaging improves the quality of the
image substantially, but far from perfectly.
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8.0 SPACE OBJECT IMAGING SENSORS

This section describes a first rough cut at comparing the numerous
potential sensors for imaging space objects in earth orbit from the
ground using short (visible or near-IR) wavelengths. Because no
extensive investigations were performed to compare the various imaging
approaches, what is contained in this section should not be considered
to be a recommendation of one approach over another; rather, this
should be viewed as an off-the-cuff 1isting of attributes and as only a
first step toward comparing the various approaches. There is a need to
perform a thorough analysis comparing these numerous candidate systems;
this was beyond the scope of the present'program, but it is recommended
that such an analysis be performed to establish the basis for
development of future fine-resolution imaging systems. This comparison
is done primarily by means of the three matrix charts shown'in Figures
8-1 to 8-3. Figure 8-1 ‘covers the case of using only laser
illumination, Figure 8-2 covers the case of using only incoherent
illumination (or emissive objects), and Figure 8-3 covers mixed-
coherence (coherent/incoherent) methods and other miscellaneous
approaches. Further additions to the matrix could be made.

The Near-Team Feasibility column indicates our opinion of the
feasibility of performing a successful experiment with present-day
technology using an existing single-aperture telescope within the next
six months. A successful experiment would be one in which the
resolution of the reconstructed image is several times better than ()
R/ro) at the object ~without the use of adaptive optics, where )\ =
wave}ength, R = range to targc’ and o ™ Fried's parameter (~10cm).
The Large Distributed Aperture column -comments on the difficulty of
putting together electro-optical hardware for a large distributed array
of apertures suitable for imaging geosynchronous objects.
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8.1 INCOHERENT-ONLY SENSORS

Several incoherent approaches, including both aperture-plane and
focal-plane (astronomical speckle) interferometry are feasible, Of
these, the one farthest along in development is speckle interferometry
(I3) using either Knox-Thompson or triple correlation to obtain an
initial image (or Fourier phase) estimate which 1is refined by the
iterative transform algorithm. This would yield an incoherent image of
the object. It requires hundreds to thousands of frames with different
realizations of atmospheric turbulence, and requires measurements on a
reference star through an atmosphere having the same statistics as the
atmosphere through which the object 1s 1imaged. It is restricted to
pre-dawn or post-dusk imaging while the sensor is in night-time but the
object is sun illuminated.

An extension of this method to large distributed apertures for
imaging geosynchronous satellites would be difficult due to a
requirement of a common focal plane.

8.2 COHERENT~ONLY SENSORS

For imaging with coherent laser illumination only, all the
approaches are risky. The least risky, in terms of image
reconstruction, would be a combination of Laser Dual Plane (C5) with
Imaging Correlography (C3). Figure 8-4 shows a flowchart of the data
processing for this combined approach. Imaging Correlography is the
collection of multiple aperture-plane speckle in‘ensity patterns, power
spectrum (or autocorrelation) averaging, and 1image reconstruction by
the iterative transform algorithm to .rrive at a moderate-resolution
(pm) incoherent image. The resolution is 1limited primarily by
statistical averaging noise due to a finite number of realizations of
the speckle patterns. The Laser Dual Plane method is the collection of
both an aperture-plane and a focal-plane speckle intensity pattern, and
processing by a Gerchberg-Saxton type algorithm to arrive at the
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PLANE IMAGING CORRELOGRAPHY SENSOR.
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aperture-plane complex field. This gives the field, F = |Flexp(iy),
scattered by the object times a phase factor, exp(i¢&). due to
atmospheric turbulence; the result therefore has the degraded phase
¥+¢,. Reconstruction algorithms described in Sections & and 7 would be
appropriate for correcting the phase error, ‘a’

If all the aperture-plane snapshots are processed via the Imaging
Correlography approach into a moderate-resolution image, then it shouild
be possible to use that 1image, 1in conjunction with algorithms for
setting upper limits ("locator sets") on the support of the objeci from
the support of its autocorrelation, to determine a reasonably tight
support constraint on the object.

The support constraint from Imaging Correlography plus the degraded
phase from the Dual-Plane approach should make diffraction-1imited
resolution (pd) coherent image reconstruction from a single snapshot of
aperture-plane intensity easier (although the question of just how easy
it would be has not yet been investigated). A priori knowledge of a
support constraint, which might be known for a "friendly" object, would
also make image reconstruction easier. With the collection of multiple
frames, one has the option of choosing which snapshot to process, and
the selection of one for which a strong glint is present and favorably
positioned would make reconstruction easier still. Selection of an
object that is highly noncunvex would also help. Noncoherent averaging
of N reconstructed images would decrease the speckle contrast to N'I/Z,
approximating an incoherent image for this and all the other coherent
approaches that follow.

This approach would scale well for large distributed apertures
since the two detection planes and the wavefront sensing could be done
independently for each aperture; however, the reconstructicn of the
coherent images could suffer from the sparseness of the array.




8.3 COMBINED DUAL-PLANE AND INCOHERENT ATMOSPHERE SENSING

The approach employing active 1illumination that is most likely to
succeed is (M1), a combination of the Laser Dual-Plane Sensor (C5) with
an Inccherent Atmospheric Sensor. The Laser Dual-Plane Sensor, as
described above, yields the degraded phase y+§,. A wavefront sensor
such as a shearing interferometer, operating with incoherent 1ight from
the object, yields the atmospheric phase, [ Subtraction of the
atmospheric phase from the degraded phase yields ¢, the phase due to
the object. Then an 1image is reconstructed by inverse Fourier
transformation of |Flexp(iy).

This combined method involves fairly complex hardware: two
detector planes for the laser wavelength plus a wavefront sensor for
the 1incoherent 1ight. Furthermore it requires - both laser and
incoherent (e.g. sun) illumination. However, the phase retrieval part,
finding the aperture-plane field by the Gerchberg-Saxton algorithm, is
low risk and the wavefront sensor is already in place as part of the CI
system at AMOS.

This approach would scale well for large distributed aperture§;
however phase retrieval will be needed for inter-aperture phase errors.

8.4 LASER FOCAL PLANE WITH INCOHERENT ATMOSPHERE SENSOR

This method (M2) is the same as the method above (M1) except that
(A) the aperture plane detector is eliminated and (B) the 6rdinany
circular aperture is masked to form an asymmetric-shaped aperture.
Then instead of using the  Gerchberg-Saxton algorithm to determine the
aperture-plane field from the aperture and focal plane intensities, one
uses the iterative transform algorithm to determine the aperture-plane
field from the focal plane intensity ~and the aperture-shape support
constraint, The atmospheric phase 1is subtracted and the image is
formed as in (M1) above.




8.5 CONVENTIONAL LASER IMAGING APPROACH

Although it is unlikely to be practical, we have conceived of a
means whereby it would be possible to reconstruct a diffraction-limited

) image from a single focal-plane intensity array in coherent light. It
is like the Laser Conventional approach (Cl) but with a long-coherence
' length laser with the addition of an aperture of special shape. First,

as in (M2) above, one uses the iterative transform algorithm to
reconstruct the aperture-plane'field from the focal plane intensity and
the aperture-shape support constraint. Then we use the iterative
transform algorithm to reconstruct a coherent image from the modulus of
the reconstructed aperture-plane field and a support constraint on the
object. This method would require a much higher data signal-to-noise
ratio than method (Ml) or (M2) above, since the modulus of the
aperture-plane field must be known more accurately for the iterative
recanstruction of the image than if the phase is known for simpie
Fourier-transforni reconstruction of the image. Nevertheless, this two-
stage reconstruction approach is theoretically very intriguing.
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